Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anil K. Ojha is active.

Publication


Featured researches published by Anil K. Ojha.


Cell | 2005

GroEL1: A Dedicated Chaperone Involved in Mycolic Acid Biosynthesis during Biofilm Formation in Mycobacteria

Anil K. Ojha; Mridula Anand; Apoorva Bhatt; Laurent Kremer; William R. Jacobs; Graham F. Hatfull

Mycobacteria are unusual in encoding two GroEL paralogs, GroEL1 and GroEL2. GroEL2 is essential--presumably providing the housekeeping chaperone functions--while groEL1 is nonessential, contains the attB site for phage Bxb1 integration, and encodes a putative chaperone with unusual structural features. Inactivation of the Mycobacterium smegmatis groEL1 gene by phage Bxb1 integration allows normal planktonic growth but prevents the formation of mature biofilms. GroEL1 modulates synthesis of mycolates--long-chain fatty acid components of the mycobacterial cell wall--specifically during biofilm formation and physically associates with KasA, a key component of the type II Fatty Acid Synthase involved in mycolic acid synthesis. Biofilm formation is associated with elevated synthesis of short-chain (C56-C68) fatty acids, and strains with altered mycolate profiles--including an InhA mutant resistant to the antituberculosis drug isoniazid and a strain overexpressing KasA--are defective in biofilm formation.


Molecular Microbiology | 2007

The role of iron in Mycobacterium smegmatis biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth

Anil K. Ojha; Graham F. Hatfull

Many species of mycobacteria form structured biofilm communities at liquid–air interfaces and on solid surfaces. Full development of Mycobacterium smegmatis biofilms requires addition of supplemental iron above 1 μM ferrous sulphate, although addition of iron is not needed for planktonic growth. Microarray analysis of the M. smegmatis transcriptome shows that iron‐responsive genes – especially those involved in siderophore synthesis and iron uptake – are strongly induced during biofilm formation reflecting a response to iron deprivation, even when 2 μM iron is present. The acquisition of iron under these conditions is specifically dependent on the exochelin synthesis and uptake pathways, and the strong defect of an iron–exochelin uptake mutant suggests a regulatory role of iron in the transition to biofilm growth. In contrast, although the expression of mycobactin and iron ABC transport operons is highly upregulated during biofilm formation, mutants in these systems form normal biofilms in low‐iron (2 μM) conditions. A close correlation between iron availability and matrix‐associated fatty acids implies a possible metabolic role in the late stages of biofilm maturation, in addition to the early regulatory role. M. smegmatis surface motility is similarly dependent on iron availability, requiring both supplemental iron and the exochelin pathway to acquire it.


Journal of Biological Chemistry | 2010

Enzymatic Hydrolysis of Trehalose Dimycolate Releases Free Mycolic Acids during Mycobacterial Growth in Biofilms

Anil K. Ojha; Xavier Trivelli; Yann Guérardel; Laurent Kremer; Graham F. Hatfull

Mycobacterial species, like other microbes, spontaneously form multicellular drug-tolerant biofilms when grown in vitro in detergent-free liquid media. The structure of Mycobacterium tuberculosis biofilms is formed through genetically programmed pathways and is built upon a large abundance of novel extracellular free mycolic acids (FM), although the mechanism of FM synthesis remained unclear. Here we show that the FM in Mycobacterium smegmatis biofilms is produced through the enzymatic release from constitutively present mycolyl derivatives. One of the precursors for FM is newly synthesized trehalose dimycolate (TDM), which is cleaved by a novel TDM-specific serine esterase, Msmeg_1529. Disruption of Msmeg_1529 leads to undetectable hydrolytic activity, reduced levels of FM in the mutant, and retarded biofilm growth. Furthermore, enzymatic hydrolysis of TDM remains conserved in M. tuberculosis, suggesting the presence of a TDM-specific esterase in this pathogen. Overall, this study provides the first evidence for an enzymatic release of free mycolic acids from cell envelope mycolates during mycobacterial growth.


Mbio | 2013

Keto-Mycolic Acid-Dependent Pellicle Formation Confers Tolerance to Drug-Sensitive Mycobacterium tuberculosis

Dhinakaran Sambandan; Dee N. Dao; Brian Weinrick; Catherine Vilchèze; Sudagar S. Gurcha; Anil K. Ojha; Laurent Kremer; Gurdyal S. Besra; Graham F. Hatfull; William R. Jacobs

ABSTRACT The chronic nature of tuberculosis (TB), its requirement of long duration of treatment, its ability to evade immune intervention, and its propensity to relapse after drug treatment is discontinued are reminiscent of other chronic, biofilm-associated bacterial diseases. Historically, Mycobacterium tuberculosis was grown as a pellicle, a biofilm-like structure, at the liquid-air interface in a variety of synthetic media. Notably, the most widely administered human vaccine, BCG, is grown as a pellicle for vaccine production. However, the molecular requirements for this growth remain ill defined. Here, we demonstrate that keto-mycolic acids (keto-MA) are essential for pellicle growth, and mutants lacking in or depleted of this MA species are unable to form a pellicle. We investigated the role of the pellicle biofilm in the reduction of antibiotic sensitivity known as drug tolerance using the pellicle-defective ΔmmaA4 mutant strain. We discovered that the ΔmmaA4 mutant, which is both pellicle defective and highly sensitive to rifampicin (RIF) under planktonic growth, when incorporated within the wild-type pellicle biofilm, was protected from the bactericidal activity of RIF. The observation that growth within the M. tuberculosis pellicle biofilm can confer drug tolerance to a drug-hypersensitive strain suggests that identifying molecular requirements for pellicle growth could lead to development of novel interventions against mycobacterial infections. Our findings also suggest that a class of drugs that can disrupt M. tuberculosis biofilm formation, when used in conjunction with conventional antibiotics, has the potential to overcome drug tolerance. IMPORTANCE Two of the most important questions in tuberculosis (TB) research are (i) how does Mycobacterium tuberculosis persist in the human host for decades in the face of an active immune response and (ii) why does it take six months and four drugs to treat uncomplicated TB. Both these aspects of M. tuberculosis biology are reminiscent of infections caused by organisms capable of forming biofilms. M. tuberculosis is capable of growing as a biofilm-like structure called the pellicle. In this study, we demonstrate that a specific cell wall component, keto-mycolic acid, is essential for pellicle growth. We also demonstrate that a strain of M. tuberculosis that is both drug sensitive and pellicle defective exhibits commensal behavior and becomes drug tolerant by becoming part of a heterogeneous pellicle, a characteristic of multispecies biofilms. These observations could have important implications for identifying novel pathways for M. tuberculosis drug tolerance and the design of new modalities to rapidly treat TB. Two of the most important questions in tuberculosis (TB) research are (i) how does Mycobacterium tuberculosis persist in the human host for decades in the face of an active immune response and (ii) why does it take six months and four drugs to treat uncomplicated TB. Both these aspects of M. tuberculosis biology are reminiscent of infections caused by organisms capable of forming biofilms. M. tuberculosis is capable of growing as a biofilm-like structure called the pellicle. In this study, we demonstrate that a specific cell wall component, keto-mycolic acid, is essential for pellicle growth. We also demonstrate that a strain of M. tuberculosis that is both drug sensitive and pellicle defective exhibits commensal behavior and becomes drug tolerant by becoming part of a heterogeneous pellicle, a characteristic of multispecies biofilms. These observations could have important implications for identifying novel pathways for M. tuberculosis drug tolerance and the design of new modalities to rapidly treat TB.


Expert Review of Anti-infective Therapy | 2012

Targeting drug tolerance in mycobacteria: a perspective from mycobacterial biofilms

Mohammad Shyful Islam; Jacob P. Richards; Anil K. Ojha

Multidrug chemotherapy for 6–9-months is one of the primary treatments in effective control of tuberculosis, although the mechanisms underlying the persistence of its etiological agent, Mycobacterium tuberculosis, against antibiotics remain unclear. Ever-mounting evidence indicates that the survival of many environmental and pathogenic microbial species against antibiotics is influenced by their ability to grow as surface-associated multicellular communities called biofilms. In recent years, several mycobacterial species, including M. tuberculosis, have been found to form drug-tolerant biofilms in vitro through genetically controlled mechanisms. In this review, the authors discuss the relevance of the in vitro mycobacterial biofilms in understanding the antibiotic recalcitrance of tuberculosis infections.


Journal of Visualized Experiments | 2012

Growth of Mycobacterium tuberculosis Biofilms

Kathleen Kulka; Graham F. Hatfull; Anil K. Ojha

Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, has an extraordinary ability to survive against environmental stresses including antibiotics. Although stress tolerance of M. tuberculosis is one of the likely contributors to the 6-month long chemotherapy of tuberculosis (1), the molecular mechanisms underlying this characteristic phenotype of the pathogen remain unclear. Many microbial species have evolved to survive in stressful environments by self-assembling in highly organized, surface attached, and matrix encapsulated structures called biofilms (2-4). Growth in communities appears to be a preferred survival strategy of microbes, and is achieved through genetic components that regulate surface attachment, intercellular communications, and synthesis of extracellular polymeric substances (EPS) (5,6). The tolerance to environmental stress is likely facilitated by EPS, and perhaps by the physiological adaptation of individual bacilli to heterogeneous microenvironments within the complex architecture of biofilms (7). In a series of recent papers we established that M. tuberculosis and Mycobacterium smegmatis have a strong propensity to grow in organized multicellular structures, called biofilms, which can tolerate more than 50 times the minimal inhibitory concentrations of the anti-tuberculosis drugs isoniazid and rifampicin (8-10). M. tuberculosis, however, intriguingly requires specific conditions to form mature biofilms, in particular 9:1 ratio of headspace: media as well as limited exchange of air with the atmosphere (9). Requirements of specialized environmental conditions could possibly be linked to the fact that M. tuberculosis is an obligate human pathogen and thus has adapted to tissue environments. In this publication we demonstrate methods for culturing M. tuberculosis biofilms in a bottle and a 12-well plate format, which is convenient for bacteriological as well as genetic studies. We have described the protocol for an attenuated strain of M. tuberculosis, mc(2)7000, with deletion in the two loci, panCD and RD1, that are critical for in vivo growth of the pathogen (9). This strain can be safely used in a BSL-2 containment for understanding the basic biology of the tuberculosis pathogen thus avoiding the requirement of an expensive BSL-3 facility. The method can be extended, with appropriate modification in media, to grow biofilm of other culturable mycobacterial species. Overall, a uniform protocol of culturing mycobacterial biofilms will help the investigators interested in studying the basic resilient characteristics of mycobacteria. In addition, a clear and concise method of growing mycobacterial biofilms will also help the clinical and pharmaceutical investigators to test the efficacy of a potential drug.


Materials Science and Engineering: C | 2013

Antimycobacterial efficacy of silver nanoparticles as deposited on porous membrane filters.

Mohammad Shyful Islam; Curtis Larimer; Anil K. Ojha; Ian Nettleship

Environmental mycobacteria pose a significant health burden. Non-tuberculous mycobacteria infections have been traced to water treatment networks, where mycobacterial biofilms are ubiquitous. Filters that remove potential pathogens have significant medical applications. The purpose of this study is to demonstrate that an antibacterial silver nanoparticle (AgNP) coating can prevent colonization and growth of a mycobacterial biofilm on a filter material. The antibacterial efficacy of commercially available AgNPs was measured against Mycobacterium avium, Mycobacterium smegmatis, and Mycobacterium marinum after 48 h in liquid culture. Nanoparticles were deposited on micro-porous track etched polycarbonate membranes. The growth of biofilms on the membranes was observed by microscopy and counting colony forming units. M. smegmatis was most susceptible to AgNPs, with a 98.7% reduction at 100 μM AgNP concentration. M. avium was reduced by 97.3% at 539 μM AgNP after 48 h. Deposited nanoparticles inhibited colonization and growth for both M. smegmatis and M. avium on the membrane surface. Similar to the liquid culture, M. avium (84.2% survival) was more resistant than M. smegmatis (0.03% survival).


Journal of Biological Chemistry | 2012

Exposure of Mycobacteria to Cell Wall-inhibitory Drugs Decreases Production of Arabinoglycerolipid Related to Mycolyl-arabinogalactan-peptidoglycan Metabolism

Yoann Rombouts; Belinda Brust; Anil K. Ojha; Emmanuel Maes; Bernadette Coddeville; Elisabeth Elass-Rochard; Laurent Kremer; Yann Guérardel

Background: Mycolyl-arabinogalactan-peptidoglycan (mAGP) represents the hallmark of the mycobacterial cell envelope and the target of several antitubercular drugs. Results: Loss of a glycolipid structurally analogous to the terminal portion of mAGP correlates with drug treatment in mycobacteria. Conclusion: This work establishes the versatility of arabinoglycerolipids in M. tuberculosis. Significance: Further work will define the importance of the metabolic relationship between the two components in cell wall remodeling and/or pathogenesis. The “cell wall core” consisting of a mycolyl-arabinogalactan-peptidoglycan (mAGP) complex represents the hallmark of the mycobacterial cell envelope. It has been the focus of intense research at both structural and biosynthetic levels during the past few decades. Because it is essential, mAGP is also regarded as a target for several antitubercular drugs. Herein, we demonstrate that exposure of Mycobacterium bovis Bacille Calmette-Guérin or Mycobacterium marinum to thiacetazone, a second line antitubercular drug, is associated with a severe decrease in the level of a major apolar glycolipid. This inhibition requires MmaA4, a methyltransferase reported to participate in the activation process of thiacetazone. Following purification, this glycolipid was subjected to detailed structural analyses, combining gas-liquid chromatography, mass spectrometry, and nuclear magnetic resonance. This allowed to identify it as a 5-O-mycolyl-β-Araf-(1→2)-5-O-mycolyl-α-Araf-(1→1)-Gro, designated dimycolyl diarabinoglycerol (DMAG). The presence of DMAG was subsequently confirmed in other slow growing pathogenic species, including Mycobacterium tuberculosis. DMAG production was stimulated in the presence of exogenous glycerol. Interestingly, DMAG appears structurally identical to the terminal portion of the mycolylated arabinosyl motif of mAGP, and the metabolic relationship between these two components was provided using antitubercular drugs such as ethambutol or isoniazid known to inhibit the biosynthesis of arabinogalactan or mycolic acid, respectively. Finally, DMAG was identified in the cell wall of M. tuberculosis. This opens the possibility of a potent biological function for DMAG that may be important to mycobacterial pathogenesis.


Molecular Microbiology | 2012

The unusual mycobacterial chaperonins: evidence for in vivo oligomerization and specialization of function

MingQi Fan; Tara Rao; Elsa Zacco; M. Tabish Ahmed; Anshuman Shukla; Anil K. Ojha; Joanna Freeke; Carol V. Robinson; Justin L. P. Benesch; Peter A. Lund

The pathogen Mycobacterium tuberculosis expresses two chaperonins, one (Cpn60.1) dispensable and one (Cpn60.2) essential. These proteins have been reported not to form oligomers despite the fact that oligomerization of chaperonins is regarded as essential for their function. We show here that the Cpn60.2 homologue from Mycobacterium smegmatis also fails to oligomerize under standard conditions. However, we also show that the Cpn60.2 proteins from both organisms can replace the essential groEL gene of Escherichia coli, and that they can function with E. coli GroES cochaperonin, as well as with their cognate cochaperonin proteins, strongly implying that they form oligomers in vivo. We show that the Cpn60.1 proteins, but not the Cpn60.2 proteins, can complement for loss of the M. smegmatis cpn60.1 gene. We investigated the oligomerization of the Cpn60.2 proteins using analytical ultracentrifugation and mass spectroscopy. Both form monomers under standard conditions, but they form higher order oligomers in the presence of kosmotropes and ADP or ATP. Under these conditions, their ATPase activity is significantly enhanced. We conclude that the essential mycobacterial chaperonins, while unstable compared to many other bacterial chaperonins, do act as oligomers in vivo, and that there has been specialization of function of the mycobacterial chaperonins following gene duplication.


Journal of Biological Chemistry | 2010

Temperature-dependent regulation of mycolic acid cyclopropanation in saprophytic mycobacteria: role of the Mycobacterium smegmatis 1351 gene (MSMEG_1351) in CIS-cyclopropanation of alpha-mycolates.

Laeticia Alibaud; Anuradha Alahari; Xavier Trivelli; Anil K. Ojha; Graham F. Hatfull; Yann Guérardel; Laurent Kremer

The cell envelope is a crucial determinant of virulence and drug resistance in Mycobacterium tuberculosis. Several features of pathogenesis and immunomodulation of host responses are attributable to the structural diversity in cell wall lipids, particularly in the mycolic acids. Structural modification of the α-mycolic acid by introduction of cyclopropane rings as catalyzed by the methyltransferase, PcaA, is essential for a lethal, persistent infection and the cording phenotype in M. tuberculosis. Here, we demonstrate the presence of cyclopropanated cell wall mycolates in the nonpathogenic strain Mycobacterium smegmatis and identify MSMEG_1351 as a gene encoding a PcaA homologue. Interestingly, α-mycolic acid cyclopropanation was inducible in cultures grown at 25 °C. The growth temperature modulation of the cyclopropanating activity was determined by high resolution magic angle spinning NMR analyses on whole cells. In parallel, quantitative reverse transcription-PCR analysis showed that MSMEG_1351 gene expression is up-regulated at 25 °C compared with 37 °C. An MSMEG_1351 knock-out strain of M. smegmatis, generated by recombineering, exhibited a deficiency in cyclopropanation of α-mycolates. The functional equivalence of PcaA and MSMEG_1351 was established by cross-complementation in the MSMEG_1351 knock-out mutant and also in a ΔpcaA strain of Mycobacterium bovis BCG. Overexpression of MSMEG_1351 restored the wild-type mycolic acid profile and the cording phenotype in BCG. Although the biological significance of mycolic acid cyclopropanation in nonpathogenic mycobacteria remains unclear, it likely represents a mechanism of adaptation of cell wall structure and composition to cope with environmental factors.

Collaboration


Dive into the Anil K. Ojha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurent Kremer

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

William R. Jacobs

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Yang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Curtis Larimer

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Dhinakaran Sambandan

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ian Nettleship

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge