Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anil Prasad is active.

Publication


Featured researches published by Anil Prasad.


Oncogene | 2004

REGULATION OF CXCR4-MEDIATED CHEMOTAXIS AND CHEMOINVASION OF BREAST CANCER CELLS

Aaron Zefrin Fernandis; Anil Prasad; Hamid Band; Roland Klösel; Ramesh K. Ganju

The chemokine-CXCL12 and its receptor, CXCR4, have recently been shown to play an important role in regulating the directional migration of breast cancer cells to sites of metastasis. In the present study, we showed that CXCL12 enhanced the chemotaxis, chemoinvasion and adhesive properties of breast cancer cells; parameters that are critical for development of metastasis. We have also evaluated the signaling mechanisms that regulate CXCL12-induced and CXCR4-mediated breast cancer cell motility and invasion. These studies revealed that CXCL12 induces the tyrosine phosphorylation of focal adhesion kinase (FAK) at residues 397 and 577, and of RAFTK/Pyk2 at residues 402 and 579/580. The cytoskeletal proteins paxillin and Crk, as well as tyrosine phosphatase SHP2 and adaptor protein Cbl, were also phosphorylated. CXCL12 induced the activation of PI 3-kinase, and increased its association with Cbl and SHP2. PI 3-kinase, RAFTK/Pyk2 and tyrosine phosphatase inhibitors significantly blocked CXCL12-induced chemotaxis and chemoinvasion. The role of SHP2 and Cbl in CXCL12-induced chemotaxis and chemoinvasion in breast cancer cells was further defined by transiently overexpressing wild-type SHP2, wild-type Cbl, dominant-negative SHP2, Cbl mutants 70Z/3 and G306E or double transfectants of the Cbl and SHP2 constructs. We found a novel role of Cbl in CXCL12-induced chemotaxis, which may be mediated through the activation and formation of a multimeric complex comprised of Cbl, SHP2 and PI 3-kinase. We also observed the activation of matrix metalloproteinases 2 and 9 upon CXCL12 stimulation. These studies provide new information regarding signaling pathways that may regulate CXCL12-induced metastasis in breast cancer cells.


Molecular Cancer Therapeutics | 2011

Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy.

Ashutosh Shrivastava; Paula M. Kuzontkoski; Jerome E. Groopman; Anil Prasad

Cannabidiol (CBD), a major nonpsychoactive constituent of cannabis, is considered an antineoplastic agent on the basis of its in vitro and in vivo activity against tumor cells. However, the exact molecular mechanism through which CBD mediates this activity is yet to be elucidated. Here, we have shown CBD-induced cell death of breast cancer cells, independent of cannabinoid and vallinoid receptor activation. Electron microscopy revealed morphologies consistent with the coexistence of autophagy and apoptosis. Western blot analysis confirmed these findings. We showed that CBD induces endoplasmic reticulum stress and, subsequently, inhibits AKT and mTOR signaling as shown by decreased levels of phosphorylated mTOR and 4EBP1, and cyclin D1. Analyzing further the cross-talk between the autophagic and apoptotic signaling pathways, we found that beclin1 plays a central role in the induction of CBD-mediated apoptosis in MDA-MB-231 breast cancer cells. Although CBD enhances the interaction between beclin1 and Vps34, it inhibits the association between beclin1 and Bcl-2. In addition, we showed that CBD reduces mitochondrial membrane potential, triggers the translocation of BID to the mitochondria, the release of cytochrome c to the cytosol, and, ultimately, the activation of the intrinsic apoptotic pathway in breast cancer cells. CBD increased the generation of reactive oxygen species (ROS), and ROS inhibition blocked the induction of apoptosis and autophagy. Our study revealed an intricate interplay between apoptosis and autophagy in CBD-treated breast cancer cells and highlighted the value of continued investigation into the potential use of CBD as an antineoplastic agent. Mol Cancer Ther; 10(7); 1161–72. ©2011 AACR.


Cancer Epidemiology, Biomarkers & Prevention | 2010

Standard Preanalytical Coding for Biospecimens: Defining the Sample PREanalytical Code

Fotini Betsou; Sylvain Lehmann; Garry Ashton; Michael G. Barnes; Erica E. Benson; Domenico Coppola; Yvonne DeSouza; James Eliason; Barbara Glazer; Fiorella Guadagni; Keith Harding; David J. Horsfall; Cynthia Kleeberger; Umberto Nanni; Anil Prasad; Kathi Shea; Amy P.N. Skubitz; Stella Somiari; Elaine Gunter

Background: Management and traceability of biospecimen preanalytical variations are necessary to provide effective and efficient interconnectivity and interoperability between Biobanks. Methods: Therefore, the International Society for Biological and Environmental Repositories Biospecimen Science Working Group developed a “Standard PREanalytical Code” (SPREC) that identifies the main preanalytical factors of clinical fluid and solid biospecimens and their simple derivatives. Results: The SPREC is easy to implement and can be integrated into Biobank quality management systems and databases. It can also be extended to nonhuman biorepository areas. Its flexibility allows integration of new novel technological developments in future versions. SPREC version 01 is presented in this article. Conclusions and Impact: Implementation of the SPREC is expected to facilitate and consolidate international multicenter biomarker identification research and biospecimen research in the clinical Biobank environment. Cancer Epidemiol Biomarkers Prev; 19(4); 1004–11. ©2010 AACR.


Journal of Biological Chemistry | 2004

Slit protein-mediated inhibition of CXCR4-induced chemotactic and chemoinvasive signaling pathways in breast cancer cells.

Anil Prasad; Aaron Zefrin Fernandis; Yi Rao; Ramesh K. Ganju

Slit, which mediates its function by binding to the Roundabout (Robo) receptor, has been shown to regulate neuronal and CXCR4-mediated leukocyte migration. Slit-2 was shown to be frequently inactivated in lung and breast cancers because of hypermethylation of its promoter region. Furthermore, the CXCR4/CXCL12 axis has been reported recently to be actively involved in breast cancer metastasis to target organs such as lymph nodes, lung, and bone. In this study, we sought to characterize the effect of Slit (=Slit-2) on the CXCL12/CXCR4-mediated metastatic properties of breast cancer cells. We demonstrate here that breast cancer cells and tissues derived from breast cancer patients express Robo 1 and 2 receptors. We also show that Slit treatment inhibits CXCL12/CXCR4-induced breast cancer cell chemotaxis, chemoinvasion, and adhesion, the fundamental components that promote metastasis. Slit had no significant effect on the CXCL12-induced internalization process of CXCR4. In addition, characterization of signaling events revealed that Slit inhibits CXCL12-induced tyrosine phosphorylation of focal adhesion components such as RAFTK/Pyk2 at residues 580 and 881, focal adhesion kinase at residue 576, and paxillin. We found that Slit also inhibits CXCL12-induced phosphatidylinositol 3-kinase, p44/42 MAP kinase, and metalloproteinase 2 and 9 activities. However, it showed no effect on JNK and p38 MAP kinase activities. To our knowledge, this is the first report to analyze in detail the effect of Slit on breast cancer cell motility as well as its effect on the critical components of the cancer cell chemotactic machinery. Studies of the Slit-Robo complex may foster new anti-chemotactic approaches to block cancer cell metastasis.


Journal of Leukocyte Biology | 2007

Slit‐2/Robo‐1 modulates the CXCL12/CXCR4‐induced chemotaxis of T cells

Anil Prasad; Zahida Qamri; Jane Y. Wu; Ramesh K. Ganju

Slit, which mediates its function by binding to the Roundabout (Robo) receptor, has been shown to regulate neuronal, dendritic, and leukocyte migration. However, the molecular mechanism by which the Slit/Robo complex inhibits the migration of cells is not well defined. Here, we showedthat Slit‐2 can inhibit the CXCL12‐induced chemotaxis and transendothelial migration of T cells and monocytes. We observed that CXCR4 associates with Robo‐1 and that Slit‐2 treatment enhances this association with the Robo‐1 receptor. Robo‐1 is a single‐pass transmembrane receptor whose intracellular region contains four conserved motifs designated as CC0, CC1, CC2, and CC3. Structural and functional analyses of Robo receptors revealed that interaction of the CC3 motif with the CXCR4 receptor may regulate the CXCL12‐induced chemotaxis of T cells. We further characterized Slit‐2‐mediated inhibition of the CXCL12/CXCR4 chemotactic pathway and found that Slit‐2 can block the CXCL12‐induced activation of the Src and Lck kinases but not Lyn kinase. Although Slit‐2 did not inhibit the CXCL12‐induced activation of MAPKs, it did inhibit the Akt phosphorylation and Rac activation induced by this chemokine. Altogether, our studies indicate a novel mechanism by which the Slit/Robo complex may inhibit the CXCR4/CXCL12‐mediated chemotaxis of T cells.


Cancer Epidemiology, Biomarkers & Prevention | 2009

Human biospecimen research: Experimental protocol and quality control tools

Fotini Betsou; Rebecca Barnes; Thomas Burke; Domenico Coppola; Yvonne DeSouza; James Eliason; Barbara Glazer; David J. Horsfall; Cynthia Kleeberger; Sylvain Lehmann; Anil Prasad; Amy P.N. Skubitz; Stella Somiari; Elaine Gunter

Among the different types of variability (interindividual, intra-individual, analytical, and preanalytical) that can influence the results of any biological assay, preanalytical variations are the most difficult to manage. Preanalytical variations are defined as any variation taking place between


Clinical Cancer Research | 2004

Increased Expression and Secretion of Interleukin-6 in Patients with Barrett’s Esophagus

Katerina Dvorakova; Claire M. Payne; Lois Ramsey; Hana Holubec; Richard E. Sampliner; Jessica A. Dominguez; Bohuslav Dvorak; Harris Bernstein; Carol Bernstein; Anil Prasad; Ronnie Fass; Haiyan Cui; Harinder S. Garewal

Purpose: Barrett’s esophagus (BE) is a common premalignant lesion of the distal part of the esophagus that arises as a consequence of chronic duodenogastroesophageal reflux. Interleukin (IL)-6 is a pleiotropic cytokine that regulates immune defense mechanisms and hematopoiesis. In addition, IL-6 may also be involved in malignant transformation and tumor progression. IL-6 has been shown to inhibit apoptosis. The major aim of this study was to evaluate expression of IL-6 in BE at the protein and mRNA levels. In addition, we tested whether proteins that are associated with IL-6 signaling, phosphorylated signal transducer and activator of transcription 3 and two antiapoptotic proteins, Bcl-xL and Mcl-1, are also expressed in the same tissues. Experimental Design: Biopsies of duodenum, BE, and squamous epithelium were evaluated by using a human cytokine protein array, ELISA, real-time PCR, and immunohistochemistry. Results: Increased IL-6 levels were found to be secreted from BE tissue compared with duodenum or squamous epithelium from sites adjacent or 5 cm away from the BE lesion. IL-6 mRNA was also elevated in BE compared with duodenum or squamous epithelium in five of seven patients. Immunohistochemical studies confirmed IL-6 expression in intestinal glandular epithelium in BE tissue. Activated signal transducer and activator of transcription 3, Mcl-1, and Bcl-xL are present at higher levels in BE glands, with lower levels being found in duodenum or squamous epithelium Conclusions: These data, taken together, suggest that elevated IL-6 levels in BE may contribute to the development of apoptosis resistance, thereby placing this epithelium at higher risk of developing malignancy.


Journal of Biological Chemistry | 2008

Slit-2 Induces a Tumor-suppressive Effect by Regulating β-Catenin in Breast Cancer Cells

Anil Prasad; Vikram Paruchuri; Anju Preet; Farida Latif; Ramesh K. Ganju

SLIT-2 is considered as a candidate tumor suppressor gene, because it is frequently inactivated in various cancers due to hypermethylation of its promoter region and allelic loss. However, the exact mechanism of its tumor-suppressive effect has not been elucidated. Here, we observed that Slit-2-overexpressing breast cancer cells exhibited decreased proliferation and migration capabilities compared with control cells under in vitro conditions. These results were confirmed in vivo in mouse model systems. Mice injected with MCF-7/Slit-2 cells showed a 60–70% reduction in tumor size compared with mice injected with MCF-7/VC cells both in the absence and presence of estrogen. Upon further elucidation, we observed that Slit-2 mediates the tumor-suppressive effect via a coordinated regulation of the β-catenin and PI3K signaling pathways and by enhancing β-catenin/E-cadherin-mediated cell-cell adhesion. Our study for the first time reveals that Slit-2-overexpressing breast cancer cells exhibit tumor suppressor capabilities through the novel mechanism of β-catenin modulation.


Clinical Cancer Research | 2007

Activation of the Interleukin-6/STAT3 Antiapoptotic Pathway in Esophageal Cells by Bile Acids and Low pH: Relevance to Barrett's Esophagus

Katerina Dvorak; Melissa Chavarria; Claire M. Payne; Lois Ramsey; Cara L. Crowley-Weber; Barbora Dvorakova; Bohuslav Dvorak; Harris Bernstein; Hana Holubec; Richard E. Sampliner; Carol Bernstein; Anil Prasad; Sylvan B. Green; Harinder S. Garewal

Objectives: The molecular factors contributing to the development of Barretts esophagus (BE) are unclear. Our previous studies showed that BE tissues secrete interleukin-6 (IL-6) and express proteins associated with IL-6 signaling, including IL-6 receptor, activated signal transducer and activators of transcription 3 (STAT3), and antiapoptotic proteins Bcl-xL and Mcl-1. Here, we test the hypothesis that bile acids and gastric acids, two components of refluxate associated with gastresophageal reflux disease, activate the IL-6/STAT3 pathway. Materials and Methods: Immunohistochemistry was used to assess levels of phosphorylated STAT3 in esophageal tissue samples from BE patients with different grades of dysplasia. Seg-1 esophageal adenocarcinoma cells were evaluated for STAT3 activation and IL-6 and Bcl-xL expression by molecular biology techniques, including Western blot, reverse transcription–PCR, and ELISA after exposure to control media (pH 7.4), media supplemented with a 0.1 mmol/L bile acid cocktail with media at pH 4 or media at pH 4 with bile acid cocktail. Results: Immunohistochemical analysis showed that activated, phosphorylated STAT3 is expressed in nuclei of dysplastic BE and cancer tissues. Treatment of Seg-1 cells with media containing bile acid cocktail and acidified to pH 4 resulted in increased activation of STAT3, IL-6 secretion, and increased expression of Bcl-xL. Inhibition of the STAT3 pathway using STAT3 small interfering RNA or Janus-activated kinase inhibitor resulted in increased apoptosis. Conclusions: The IL-6/STAT3 antiapoptotic pathway is induced by short exposure to bile acid cocktail and low pH. This alteration, if persistent in vivo, may underlie the development of dysplastic BE and tumor progression.


Cancer Prevention Research | 2011

Cannabinoid Receptors, CB1 and CB2, as Novel Targets for Inhibition of Non–Small Cell Lung Cancer Growth and Metastasis

Anju Preet; Zahida Qamri; Mohd W. Nasser; Anil Prasad; Konstantin Shilo; Xianghong Zou; Jerome E. Groopman; Ramesh K. Ganju

Non–small cell lung cancer (NSCLC) is the leading cause of cancer deaths worldwide; however, only limited therapeutic treatments are available. Hence, we investigated the role of cannabinoid receptors, CB1 and CB2, as novel therapeutic targets against NSCLC. We observed expression of CB1 (24%) and CB2 (55%) in NSCLC patients. Furthermore, we have shown that the treatment of NSCLC cell lines (A549 and SW-1573) with CB1/CB2- and CB2-specific agonists Win55,212-2 and JWH-015, respectively, significantly attenuated random as well as growth factor-directed in vitro chemotaxis and chemoinvasion in these cells. We also observed significant reduction in focal adhesion complex, which plays an important role in migration, upon treatment with both JWH-015 and Win55,212-2. In addition, pretreatment with CB1/CB2 selective antagonists, AM251 and AM630, prior to JWH-015 and Win55,212-2 treatments, attenuated the agonist-mediated inhibition of in vitro chemotaxis and chemoinvasion. In addition, both CB1 and CB2 agonists Win55,212-2 and JWH-133, respectively, significantly inhibited in vivo tumor growth and lung metastasis (∼50%). These effects were receptor mediated, as pretreatment with CB1/CB2 antagonists abrogated CB1/CB2 agonist–mediated effects on tumor growth and metastasis. Reduced proliferation and vascularization, along with increased apoptosis, were observed in tumors obtained from animals treated with JWH-133 and Win55,212-2. Upon further elucidation into the molecular mechanism, we observed that both CB1 and CB2 agonists inhibited phosphorylation of AKT, a key signaling molecule controlling cell survival, migration, and apoptosis, and reduced matrix metalloproteinase 9 expression and activity. These results suggest that CB1 and CB2 could be used as novel therapeutic targets against NSCLC. Cancer Prev Res; 4(1); 65–75. ©2010 AACR.

Collaboration


Dive into the Anil Prasad's collaboration.

Top Co-Authors

Avatar

Robert S. Krouse

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerome E. Groopman

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge