Anil V. Nair
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anil V. Nair.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Anil V. Nair; Berthold Hocher; Sjoerd Verkaart; Femke van Zeeland; Thiemo Pfab; Torsten Slowinski; You-Peng Chen; Karl P. Schlingmann; André Schaller; Sabina Gallati; René J. M. Bindels; Martin Konrad; Joost G. J. Hoenderop
Hypomagnesemia affects insulin resistance and is a risk factor for diabetes mellitus type 2 (DM2) and gestational diabetes mellitus (GDM). Two single nucleotide polymorphisms (SNPs) in the epithelial magnesium channel TRPM6 (V1393I, K1584E) were predicted to confer susceptibility for DM2. Here, we show using patch clamp analysis and total internal reflection fluorescence microscopy, that insulin stimulates TRPM6 activity via a phosphoinositide 3-kinase and Rac1-mediated elevation of cell surface expression of TRPM6. Interestingly, insulin failed to activate the genetic variants TRPM6(V1393I) and TRPM6(K1584E), which is likely due to the inability of the insulin signaling pathway to phosphorylate TRPM6(T1391) and TRPM6(S1583). Moreover, by measuring total glycosylated hemoglobin (TGH) in 997 pregnant women as a measure of glucose control, we demonstrate that TRPM6(V1393I) and TRPM6(K1584E) are associated with higher TGH and confer a higher likelihood of developing GDM. The impaired response of TRPM6(V1393I) and TRPM6(K1584E) to insulin represents a unique molecular pathway leading to GDM where the defect is located in TRPM6.
Journal of Biological Chemistry | 2013
Elizabeth H. P. Leunissen; Anil V. Nair; Christian Büll; Dirk J. Lefeber; Floris L. van Delft; René J. M. Bindels; Joost G. J. Hoenderop
Background: The epithelial Ca2+ channel TRPV5 facilitates Ca2+ reabsorption in the kidney and is regulated by sialidase and the hormone klotho. Results: Sialidase stimulates TRPV5 plasma membrane stabilization in a lipid raft-dependent manner, while klotho increased cell surface expression of the channel via its N-glycan. Conclusion: Klotho and sialidase regulate TRPV5 membrane stabilization in a different manner. Significance: Understanding the regulation of TRPV5 is crucial to treat patients with Ca2+-related disorders. The transient receptor potential vanilloid type 5 (TRPV5) Ca2+ channel facilitates transcellular Ca2+ transport in the distal convoluted tubule (DCT) of the kidney. The channel is glycosylated with a complex type N-glycan and it has been postulated that hydrolysis of the terminal sialic acid(s) stimulate TRPV5 activity. The present study delineates the role of the N-glycan in TRPV5 activity using biochemical assays in Human Embryonic Kidney 293 cells expressing TRPV5, isoelectric focusing and total internal reflection fluorescent microscopy. The anti-aging hormone klotho and other glycosidases stimulate TRPV5-dependent Ca2+ uptake. Klotho was found to increase the plasma membrane stability of TRPV5, via the TRPV5 N-glycan. Sialidase mimicked this stimulatory action. However, this effect was independent of the N-glycosylation state of TRPV5, since the N-glycosylation mutant (TRPV5N358Q) was activated to the same extent. We showed that the increased TRPV5 activity after sialidase treatment is caused by inhibition of lipid raft-mediated internalization. In addition, sialidase modified the N-glycan of transferrin, a model glycoprotein, differently from klotho. Previous studies showed that after klotho treatment, galectin-1 binds the TRPV5 N-glycan and thereby increases TRPV5 activity. However, galectin-3, but not galectin-1, was expressed in the DCT. Furthermore, an increase in TRPV5-mediated Ca2+ uptake was detected after galectin-3 treatment. In conclusion, two distinct TRPV5 stimulatory mechanisms were demonstrated; a klotho-mediated effect that is dependent on the N-glycan of TRPV5 and a sialidase-mediated stimulation that is lipid raft-dependent and independent of the N-glycan of TRPV5.
Journal of Biological Chemistry | 2010
Jenny van der Wijst; Bob Glaudemans; Hanka Venselaar; Anil V. Nair; Anna-Lena Forst; Joost G. J. Hoenderop; René J. M. Bindels
Mutations in the voltage-gated K+ channel Kv1.1 have been linked with a mixed phenotype of episodic ataxia and/or myokymia. Recently, we presented autosomal dominant hypomagnesemia as a new phenotypic characteristic associated with a mutation in Kv1.1 (N255D) (Glaudemans, B., van der Wijst, J., Scola, R. H., Lorenzoni, P. J., Heister, A., van der Kemp, A. W., Knoers, N. V., Hoenderop, J. G., and Bindels, R. J. (2009) J. Clin. Invest. 119, 936–942). A conserved asparagine at position 255 in the third transmembrane segment was converted into an aspartic acid, resulting in a non-functional channel. In this study, we explored the functional consequence of this conserved residue by substitution with other hydrophobic, polar, or charged amino acids (N255E, N255Q, N255A, N255V, N255T, and N255H). Upon overexpression in human embryonic kidney (HEK293) cells, cell surface biotinylation revealed plasma membrane expression of all mutant channels. Next, we used the whole-cell patch clamp technique to demonstrate that the N255E and N255Q mutants were non-functional. Substitution of Asn-255 with other amino acids (N255A, N255V, N255T, and N255H) did not prevent ion conduction, and these mutant channels activated at more negative potentials when compared with wild-type channels, −41.5 ± 1.6, −45.5 ± 2.0, −50.5 ± 1.9, and −33.8 ± 1.3 mV to −29.4 ± 1.1 mV, respectively. The time constant of activation was significantly faster for the two most hydrophobic mutations, N255A (6.2 ± 0.2 ms) and N255V (5.2 ± 0.3 ms), and the hydrophilic mutant N255T (9.8 ± 0.4 ms) in comparison with wild type (13.0 ± 0.9 ms). Furthermore, the voltage dependence of inactivation was shifted ∼13 mV to more negative potentials in all mutant channels except for N255H. Taken together, our data showed that an asparagine at position 255 in Kv1.1 is required for normal voltage dependence and kinetics of channel gating.
American Journal of Physiology-renal Physiology | 2012
Nicolas Markadieu; Pedro San-Cristobal; Anil V. Nair; Sjoerd Verkaart; Ellen E Lenssen; Kukiat Tudpor; Femke van Zeeland; Johannes Loffing; René R.J. Bindels; Joost J.G. Hoenderop
Studying the molecular regulation of the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) is important for understanding how the kidney contributes to blood pressure regulation. Until now, a native mammalian cell model to investigate this transporter remained unknown. Our aim here is to establish, for the first time, a primary distal convoluted tubule (DCT) cell culture exhibiting transcellular thiazide-sensitive Na(+) transport. Because parvalbumin (PV) is primarily expressed in the DCT, where it colocalizes with NCC, kidneys from mice expressing enhanced green-fluorescent protein (eGFP) under the PV gene promoter (PV-eGFP-mice) were employed. The Complex Object Parametric Analyzer and Sorter (COPAS) was used to sort fluorescent PV-positive tubules from these kidneys, which were then seeded onto permeable supports. After 6 days, DCT cell monolayers developed transepithelial resistance values of 630 ± 33 Ω·cm(2). The monolayers also established opposing transcellular concentration gradients of Na(+) and K(+). Radioactive (22)Na(+) flux experiments showed a net apical-to-basolateral thiazide-sensitive Na(+) transport across the monolayers. Both hypotonic low-chloride medium and 1 μM angiotensin II increased this (22)Na(+) transport significantly by four times, which could be totally blocked by 100 μM hydrochlorothiazide. Angiotensin II-stimulated (22)Na(+) transport was also inhibited by 1 μM losartan. Furthermore, NCC present in the DCT monolayers was detected by immunoblot and immunocytochemistry studies. In conclusion, a murine primary DCT culture was established which expresses functional thiazide-sensitive Na(+)-Cl(-) transport.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Lihe Chen; Jae Wook Lee; Chung-Lin Chou; Anil V. Nair; Maria Agustina Battistone; Teodor G. Păunescu; Maria Merkulova; Sylvie Breton; Jill W. Verlander; Susan M. Wall; Dennis Brown; Maurice B. Burg; Mark A. Knepper
Significance A long-term goal in mammalian biology is to identify the genes expressed in every cell type of the body. In the kidney, the expressed genes (i.e., transcriptome) of all epithelial cell types have already been identified with the exception of the cells that make up the renal collecting duct, which is responsible for regulation of blood pressure and body fluid composition. Here, single-cell RNA-sequencing was used in mouse to identify transcriptomes for the major collecting duct cell types: type A intercalated cells, type B intercalated cells, and principal cells. The information was used to create a publicly accessible online resource. The data allowed identification of genes that are selectively expressed in each cell type, which is informative for cell-level understanding of physiology and pathophysiology. Prior RNA sequencing (RNA-seq) studies have identified complete transcriptomes for most renal epithelial cell types. The exceptions are the cell types that make up the renal collecting duct, namely intercalated cells (ICs) and principal cells (PCs), which account for only a small fraction of the kidney mass, but play critical physiological roles in the regulation of blood pressure, extracellular fluid volume, and extracellular fluid composition. To enrich these cell types, we used FACS that employed well-established lectin cell surface markers for PCs and type B ICs, as well as a newly identified cell surface marker for type A ICs, c-Kit. Single-cell RNA-seq using the IC- and PC-enriched populations as input enabled identification of complete transcriptomes of A-ICs, B-ICs, and PCs. The data were used to create a freely accessible online gene-expression database for collecting duct cells. This database allowed identification of genes that are selectively expressed in each cell type, including cell-surface receptors, transcription factors, transporters, and secreted proteins. The analysis also identified a small fraction of hybrid cells expressing aquaporin-2 and anion exchanger 1 or pendrin transcripts. In many cases, mRNAs for receptors and their ligands were identified in different cells (e.g., Notch2 chiefly in PCs vs. Jag1 chiefly in ICs), suggesting signaling cross-talk among the three cell types. The identified patterns of gene expression among the three types of collecting duct cells provide a foundation for understanding physiological regulation and pathophysiology in the renal collecting duct.
ACS Nano | 2015
Anil V. Nair; Edmund J. Keliher; Amanda B. Core; Dennis Brown; Ralph Weissleder
Nanotechnology approaches are actively being pursued for drug delivery, novel diagnostics, implantable devices, and consumer products. While considerable research has been performed on the effects of these materials on targeted tumor or phagocytic cells, relatively little is known about their effects on renal cells. This becomes critical for supersmall nanoparticles (<10 nm), designed to be renally excreted. The active endocytic machinery of kidney proximal tubules avidly internalizes filtered proteins, which may also be the case for filtered nanoparticles. To test whether such interactions affect kidney function, we injected mice with either 5 nm dextran-based nanoparticles (DNP) that are similar in composition to FDA-approved materials or poly(amido amine) dendrimer nanoparticles (PNP) of comparable size. These fluorescently tagged nanoparticles were both filtered and internalized by renal tubular epithelial cells in a dose- and time-dependent fashion. The biological effects were quantitated by immunocytochemistry, measuring kidney injury markers and performing functional tests. DNP administration resulted in a dose-dependent increase in urinary output, while cellular albumin endocytosis was increased. The expression of megalin, a receptor involved in albumin uptake, was also increased, but AQP1 expression was unaffected. The effects after PNP administration were similar but additionally resulted in increased clathrin expression and increased endocytosis of dextran. We conclude that there are no major detrimental renal effects of DNP on overall kidney function, but changes in endocytosis-mediating protein expression do occur. These studies provide a framework for the testing of additional nanoparticle preparations as they become available.
American Journal of Physiology-cell Physiology | 2014
Naohiro Nomura; Paula Nunes; Richard Bouley; Anil V. Nair; Stanley Y. Shaw; Erica Ueda; Nutthapoom Pathomthongtaweechai; Hua A. Jenny Lu; Dennis Brown
A reduction or loss of plasma membrane aquaporin 2 (AQP2) in kidney principal cells due to defective vasopressin (VP) signaling through the VP receptor causes excessive urine production, i.e., diabetes insipidus. The amount of AQP2 on the plasma membrane is regulated by a balance of exocytosis and endocytosis and is the rate limiting step for water reabsorption in the collecting duct. We describe here a systematic approach using high-throughput screening (HTS) followed by in vitro and in vivo assays to discover novel compounds that enhance vasopressin-independent AQP2 membrane expression. We performed initial chemical library screening with a high-throughput exocytosis fluorescence assay using LLC-PK1 cells expressing soluble secreted yellow fluorescent protein and AQP2. Thirty-six candidate exocytosis enhancers were identified. These compounds were then rescreened in AQP2-expressing cells to determine their ability to increase AQP2 membrane accumulation. Effective drugs were then applied to kidney slices in vitro. Three compounds, AG-490, β-lapachone, and HA14-1 increased AQP2 membrane accumulation in LLC-PK1 cells, and both AG-490 and β-lapachone were also effective in MDCK cells and principal cells in rat kidney slices. Finally, one compound, AG-490 (an EGF receptor and JAK-2 kinase inhibitor), decreased urine volume and increased urine osmolality significantly in the first 2-4 h after a single injection into VP-deficient Brattleboro rats. In conclusion, we have developed a systematic procedure for identifying new compounds that modulate AQP2 trafficking using initial HTS followed by in vitro assays in cells and kidney slices, and concluding with in vivo testing in an animal model.
Journal of The American Society of Nephrology | 2016
Pui W. Cheung; Naohiro Nomura; Anil V. Nair; Nutthapoom Pathomthongtaweechai; Lars Ueberdiek; Hua A. Jenny Lu; Dennis Brown; Richard Bouley
Nephrogenic diabetes insipidus (NDI) is caused by impairment of vasopressin (VP) receptor type 2 signaling. Because potential therapies for NDI that target the canonical VP/cAMP/protein kinase A pathway have so far proven ineffective, alternative strategies for modulating aquaporin 2 (AQP2) trafficking have been sought. Successful identification of compounds by our high-throughput chemical screening assay prompted us to determine whether EGF receptor (EGFR) inhibitors stimulate AQP2 trafficking and reduce urine output. Erlotinib, a selective EGFR inhibitor, enhanced AQP2 apical membrane expression in collecting duct principal cells and reduced urine volume by 45% after 5 days of treatment in mice with lithium-induced NDI. Similar to VP, erlotinib increased exocytosis and decreased endocytosis in LLC-PK1 cells, resulting in a significant increase in AQP2 membrane accumulation. Erlotinib increased phosphorylation of AQP2 at Ser-256 and Ser-269 and decreased phosphorylation at Ser-261 in a dose-dependent manner. However, unlike VP, the effect of erlotinib was independent of cAMP, cGMP, and protein kinase A. Conversely, EGF reduced VP-induced AQP2 Ser-256 phosphorylation, suggesting crosstalk between VP and EGF in AQP2 trafficking and a role of EGF in water homeostasis. These results reveal a novel pathway that contributes to the regulation of AQP2-mediated water reabsorption and suggest new potential therapeutic strategies for NDI treatment.
Cell Calcium | 2010
Kyu Pil Lee; Anil V. Nair; Christian Grimm; Femke van Zeeland; Stefan Heller; René J. M. Bindels; Joost G.J. Hoenderop
TRPV5, a member of transient receptor potential (TRP) superfamily of ion channels, plays a crucial role in epithelial calcium transport in the kidney. This channel has a high selectivity for Ca(2+) and is tightly regulated by intracellular Ca(2+) concentrations. Recently it was shown that the molecular basis of deafness in varitint-waddler mouse is the result of hair cell death caused by the constitutive activity of transient receptor potential mucolipin 3 (TRPML3) channel carrying a helix breaking mutation, A419P, at the intracellular proximity of the fifth transmembrane domain (TM5). This mutation significantly elevates intracellular Ca(2+) concentration and causes rapid cell death. Here we show that substituting the equivalent location in TRPV5, the M490, to proline significantly modulates Ca(2+)-dependent inactivation of TRPV5. The single channel conductance, time constant of inactivation (τ) and half maximal inhibition constant (IC(50)) of TRPV5(M490P) were increased compared to TRPV5(WT). Moreover TRPV5(M490P) showed lower Ca(2+) permeability. Out of different point mutations created to characterize the importance of M490 in Ca(2+)-dependent inactivation, only TRPV5(M490P)-expressing cells showed apoptosis and extremely altered Ca(2+)-dependent inactivation. In conclusion, the TRPV5 channel is susceptible for helix breaking mutations and the proximal intracellular region of TM5 of this channel plays an important role in Ca(2+)-dependent inactivation.
Journal of The American Society of Nephrology | 2016
Maxime G. Blanchard; Wararat Kittikulsuth; Anil V. Nair; Jeroen H. F. de Baaij; Femke Latta; Jonathan R. Genzen; Donald E. Kohan; René J. M. Bindels; Joost G. J. Hoenderop
The transient receptor potential melastatin type 6 (TRPM6) epithelial Mg(2+) channels participate in transcellular Mg(2+) transport in the kidney and intestine. Previous reports suggested a hormonal cAMP-dependent regulation of Mg(2+) reabsorption in the kidney. The molecular details of this process are, however, unknown. Adenylate cyclase 3 (Adcy3) has been shown to colocalize with the Na(+)/Cl(-) cotransporter, a marker of the distal convoluted segment of the kidney, the principal site of TRPM6 expression. Given the critical role of TRPM6 in Mg(2+) reabsorption, an inducible kidney-specific Adcy3 deletion mouse model was characterized for blood and urinary electrolyte disturbances under a normal--and low--Mg(2+) diet. Increased urinary Mg(2+) wasting and Trpm6 mRNA levels were observed in the urine and kidney of Adcy3-deleted animals compared with wild-type controls. Serum Mg(2+) concentration was significantly lower in Adcy3-deleted animals at day 7 on the low Mg(2+) diet. Using patch clamp electrophysiology, cell surface biotinylation, and total internal reflection fluorescence live cell imaging of transfected HEK293 cells, we demonstrated that cAMP signaling rapidly potentiates TRPM6 activity by promoting TRPM6 accumulation at the plasma membrane and increasing its single-channel conductance. Comparison of electrophysiological data from cells expressing the phosphorylation-deficient S1252A or phosphomimetic S1252D TRPM6 mutants suggests that phosphorylation at this intracellular residue participates in the observed stimulation of channel activity. Altogether, these data support a physiologically relevant magnesiotropic role of cAMP signaling in the kidney by a direct stimulatory action of protein kinase A on the plasma membrane trafficking and function of TRPM6 ion channels.