Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anilkumar K. Reddy is active.

Publication


Featured researches published by Anilkumar K. Reddy.


Circulation | 2007

Essential Role of Smad3 in Infarct Healing and in the Pathogenesis of Cardiac Remodeling

Marcin Bujak; Guofeng Ren; Hyuk Jung Kweon; Marcin Dobaczewski; Anilkumar K. Reddy; George E. Taffet; Xiao-Fan Wang; Nikolaos G. Frangogiannis

Background— Postinfarction cardiac repair is regulated through timely activation and repression of inflammatory pathways, followed by transition to fibrous tissue deposition and formation of a scar. The transforming growth factor-&bgr;/Smad3 pathway is activated in healing infarcts and may regulate cellular events critical for the inflammatory and the fibrotic responses. Methods and Results— We examined the effects of Smad3 gene disruption on infarct healing and the pathogenesis of cardiac remodeling. In the absence of injury, Smad3-null hearts had comparable function to and similar morphology as wild-type hearts. Smad3-null animals had suppressed peak chemokine expression and decreased neutrophil recruitment in the infarcted myocardium but showed timely repression of inflammatory gene synthesis and resolution of the inflammatory infiltrate. Although myofibroblast density was higher in Smad3-null infarcts, interstitial deposition of collagen and tenascin-C in the remodeling myocardium was markedly reduced. Compared with wild-type animals, Smad3−/− mice exhibited decreased dilative remodeling and attenuated diastolic dysfunction; however, infarct size was comparable between groups. Transforming growth factor-&bgr;-mediated induction of procollagen type III and tenascin-C in isolated cardiac fibroblasts was dependent on Smad3, which suggests that decreased fibrotic remodeling in infarcted Smad3-null hearts may be due to abrogation of the profibrotic transforming growth factor-&bgr; responses. Conclusions— Smad3 loss does not alter the time course of resolution of inflammation in healing infarcts, but it prevents interstitial fibrosis in the noninfarcted myocardium and attenuates cardiac remodeling. Thus, the Smad3 cascade may be a promising therapeutic target for the treatment of myocardial infarction.


American Journal of Pathology | 2008

Interleukin-1 Receptor Type I Signaling Critically Regulates Infarct Healing and Cardiac Remodeling

Marcin Bujak; Marcin Dobaczewski; Khaled Chatila; Leonardo H. Mendoza; Na Li; Anilkumar K. Reddy; Nikolaos G. Frangogiannis

The proinflammatory cytokine interleukin (IL)-1 signals exclusively through the type I IL-1 receptor (IL-1RI). IL-1 expression is markedly induced in the infarcted heart; however, its role in cardiac injury and repair remains controversial. We examined the effects of disrupted IL-1 signaling on infarct healing and cardiac remodeling using IL-1RI(-/-) mice. After reperfused infarction IL-1RI-null mice exhibited decreased infiltration of the infarcted myocardium with neutrophils and macrophages and reduced chemokine and cytokine expression. In the absence of IL-1 signaling, suppressed inflammation was followed by an attenuated fibrotic response. Infarcted IL-1RI(-/-) mice had decreased myofibroblast infiltration and reduced collagen deposition in the infarcted and remodeling myocardium. IL-1RI deficiency protected against the development of adverse remodeling; however, infarct size was comparable between groups suggesting that the beneficial effects of IL-1RI gene disruption were not attributable to decreased cardiomyocyte injury. Reduced chamber dilation in IL-1RI-null animals was associated with decreased collagen deposition and attenuated matrix metalloproteinase (MMP)-2 and MMP-3 expression in the peri-infarct area, suggesting decreased fibrotic remodeling of the noninfarcted heart. IL-1beta stimulated MMP mRNA synthesis in wild-type, but not in IL-1RI-null cardiac fibroblasts. In conclusion, IL-1 signaling is essential for activation of inflammatory and fibrogenic pathways in the healing infarct, playing an important role in the pathogenesis of remodeling after infarction. Thus, interventional therapeutics targeting the IL-1 system may have great benefits in myocardial infarction.


The FASEB Journal | 2006

Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis

Ying Min Zhang; Jacqueline Bo; George E. Taffet; Jiang Chang; Jianjian Shi; Anilkumar K. Reddy; Lloyd H. Michael; Michael D. Schneider; Mark L. Entman; Robert J. Schwartz; Lei Wei

Ventricular myocyte hypertrophy is an important compensatory growth response to pressure overload. However, pathophysiological cardiac hypertrophy is accompanied by reactive fibrosis and remodeling. The Rho kinase family, consisting of ROCK1 and ROCK2, has been implicated in cardiac hypertrophy and ventricular remodeling. However, these previous studies relied heavily on pharmacological inhibitors, and not on gene deletion. Here we used ROCK1 knockout (ROCK1−/−) mice to investigate role of ROCK1 in the development of ventricular remodeling induced by transverse aortic banding. We observed that ROCK1 deletion did not impair compensatory hypertrophic response induced by pressure overload. However, ROCK1−/− mice exhibited reduced perivascular and interstitial fibrosis, which was observed at 3 wk but not at 1 wk after the banding. The reduced fibrosis in the myocardium of ROCK1−/− mice was closely associated with reduced expression of a variety of extracellular matrix (ECM) proteins and fibrogenic cytokines such as TGFβ2 and connective tissue growth factor. This inhibitory effect of ROCK1 deletion on pathophysiological induction of fibrogenic cytokines was further confirmed in the myocardium of transgenic mice with cardiomyocyte‐specific overexpression of Gαq. Thus, these results indicate that ROCK1 contributes to the development of cardiac fibrosis and induction of fibrogenic cytokines in cardiomyocytes in response to pathological stimuli. Zhang, Y.‐M., Bo, J., Taffet, G. E., Chang, J., Shi, J., Reddy, A. K., Michael, L. H., Schneider, M. D., Entman, M. L., Schwartz, R. J., Wei, L. Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis. FASEB J. 20, 916–925 (2006)


Journal of Clinical Investigation | 2010

Cardiomyocyte PDGFR-β signaling is an essential component of the mouse cardiac response to load-induced stress

Vishnu Chintalgattu; Di Ai; Robert R. Langley; Jianhu Zhang; James A. Bankson; Tiffany Shih; Anilkumar K. Reddy; Kevin R. Coombes; Iyad N. Daher; Shibani Pati; Shalin S. Patel; Jennifer S. Pocius; George E. Taffet; L. Maximillian Buja; Mark L. Entman; Aarif Y. Khakoo

PDGFR is an important target for novel anticancer therapeutics because it is overexpressed in a wide variety of malignancies. Recently, however, several anticancer drugs that inhibit PDGFR signaling have been associated with clinical heart failure. Understanding this effect of PDGFR inhibitors has been difficult because the role of PDGFR signaling in the heart remains largely unexplored. As described herein, we have found that PDGFR-beta expression and activation increase dramatically in the hearts of mice exposed to load-induced cardiac stress. In mice in which Pdgfrb was knocked out in the heart in development or in adulthood, exposure to load-induced stress resulted in cardiac dysfunction and heart failure. Mechanistically, we showed that cardiomyocyte PDGFR-beta signaling plays a vital role in stress-induced cardiac angiogenesis. Specifically, we demonstrated that cardiomyocyte PDGFR-beta was an essential upstream regulator of the stress-induced paracrine angiogenic capacity (the angiogenic potential) of cardiomyocytes. These results demonstrate that cardiomyocyte PDGFR-beta is a regulator of the compensatory cardiac response to pressure overload-induced stress. Furthermore, our findings may provide insights into the mechanism of cardiotoxicity due to anticancer PDGFR inhibitors.


Nature Medicine | 2011

Requirement of argininosuccinate lyase for systemic nitric oxide production

Ayelet Erez; Sandesh C.S. Nagamani; Oleg A. Shchelochkov; Muralidhar H. Premkumar; Philippe M. Campeau; Yuqing Chen; Harsha K. Garg; Li Li; Asad Mian; Terry Bertin; Jennifer O Black; Heng Zeng; Yaoping Tang; Anilkumar K. Reddy; Marshall Summar; William E. O'Brien; David G. Harrison; William E. Mitch; Juan C. Marini; Judy L. Aschner; Nathan S. Bryan; Brendan Lee

Nitric oxide (NO) is crucial in diverse physiological and pathological processes. We show that a hypomorphic mouse model of argininosuccinate lyase (encoded by Asl) deficiency has a distinct phenotype of multiorgan dysfunction and NO deficiency. Loss of Asl in both humans and mice leads to reduced NO synthesis, owing to both decreased endogenous arginine synthesis and an impaired ability to use extracellular arginine for NO production. Administration of nitrite, which can be converted into NO in vivo, rescued the manifestations of NO deficiency in hypomorphic Asl mice, and a nitric oxide synthase (NOS)-independent NO donor restored NO-dependent vascular reactivity in humans with ASL deficiency. Mechanistic studies showed that ASL has a structural function in addition to its catalytic activity, by which it contributes to the formation of a multiprotein complex required for NO production. Our data demonstrate a previously unappreciated role for ASL in NOS function and NO homeostasis. Hence, ASL may serve as a target for manipulating NO production in experimental models, as well as for the treatment of NO-related diseases.


Journal of Hypertension | 2009

Importance of pulsatility in hypertensive carotid artery growth and remodeling.

John F. Eberth; Vincent C. Gresham; Anilkumar K. Reddy; Natasa Popovic; Emily Wilson; Jay D. Humphrey

Arteries experience marked variations in blood pressure and flow during the cardiac cycle that can intensify during exercise, in disease, or with aging. Diverse observations increasingly suggest the importance of such pulsatility in arterial homeostasis and adaptations. We used a transverse aortic arch banding model to quantify chronic effects of increased pulsatile pressure and flow on wall morphology, composition, and biaxial mechanical properties in paired mouse arteries: the highly pulsatile right common carotid artery proximal to the band (RCCA-B) and the nearly normal left common carotid artery distal to the band (LCCA-B). Increased pulsatile mechanical stimuli in RCCA-B increased wall thickness compared with LCCA-B, which correlated more strongly with pulse (r* = 0.632; P < 0.01) than mean (r* = 0.020; P = 0.47) or systolic (r* = 0.466; P < 0.05) pressure. Similarly, inner diameter at mean pressure increased in RCCA-B and correlated slightly more strongly with a normalized index of blood velocity pulsatility (r* = 0.915; P < <0.001) than mean flow (r* = 0.834; P < 0.001). Increased wall thickness and luminal diameter in RCCA-B resulted from significant increases in cell number per cross-sectional area (P < 0.001) and collagen-to-elastin ratio (P < 0.05) as well as a moderate (1.7-fold) increase in glycosaminoglycan content, which appears to have contributed to the significant decrease (P < 0.001) in the in-vivo axial stretch in RCCA-B compared with LCCA-B. Changes in RCCA-B also associated with a signficant increase in monocyte chemoattractant protein-1 (P < 0.05) whereas LCCA-B did not. Pulsatile pressure and flow are thus important stimuli in the observed three-dimensional arterial adaptations, and there is a need for increased attention to the roles of both axial wall stress and adventitial remodeling.


Journal of Histochemistry and Cytochemistry | 2013

Systematic characterization of myocardial inflammation, repair, and remodeling in a mouse model of reperfused myocardial infarction.

Panagiota Christia; Marcin Bujak; Carlos Gonzalez-Quesada; Wei Chen; Marcin Dobaczewski; Anilkumar K. Reddy; Nikolaos G. Frangogiannis

Mouse models of myocardial infarction are essential tools for the study of cardiac injury, repair, and remodeling. Our current investigation establishes a systematic approach for quantitative evaluation of the inflammatory and reparative response, cardiac function, and geometry in a mouse model of reperfused myocardial infarction. Reperfused mouse infarcts exhibited marked induction of inflammatory cytokines that peaked after 6 hr of reperfusion. In the infarcted heart, scar contraction and chamber dilation continued for at least 28 days after reperfusion; infarct maturation was associated with marked thinning of the scar, accompanied by volume loss and rapid clearance of cellular elements. Echocardiographic measurements of end-diastolic dimensions correlated well with morphometric assessment of dilative remodeling in perfusion-fixed hearts. Hemodynamic monitoring was used to quantitatively assess systolic and diastolic function; the severity of diastolic dysfunction following myocardial infarction correlated with cardiomyocyte hypertrophy and infarct collagen content. Expression of molecular mediators of inflammation and cellular infiltration needs to be investigated during the first 72 hr, whereas assessment of dilative remodeling requires measurement of geometric parameters for at least four weeks after the acute event. Rapid initiation and resolution of the inflammatory response, accelerated scar maturation, and extensive infarct volume loss are important characteristics of infarct healing in mice.


PLOS ONE | 2013

microRNA-22 promotes heart failure through coordinate suppression of PPAR/ERR-nuclear hormone receptor transcription.

Priyatansh Gurha; Tiannan Wang; Ashley H. Larimore; Yassine Sassi; Cei Abreu-Goodger; Maricela O. Ramirez; Anilkumar K. Reddy; Stefan Engelhardt; George E. Taffet; Xander H.T. Wehrens; Mark L. Entman; Antony Rodriguez

Increasing evidence suggests that microRNAs are intimately involved in the pathophysiology of heart failure. MicroRNA-22 (miR-22) is a muscle-enriched miRNA required for optimum cardiac gene transcription and adaptation to hemodynamic stress by pressure overload in mice. Recent evidence also suggests that miR-22 induces hypertrophic growth and it is oftentimes upregulated in end stage heart failure. However the scope of mRNA targets and networks of miR-22 in the heart failure remained unclear. We analyzed transgenic mice with enhanced levels of miR-22 expression in adult cardiomyocytes to identify important pathophysiologic targets of miR-22. Our data shows that forced expression of miR-22 induces a pro-hypertrophic gene expression program, and it elicits contractile dysfunction leading to cardiac dilation and heart failure. Increased expression of miR-22 impairs the Ca2+ transient, Ca2+ loading into the sarcoplasmic reticulum plus it interferes with transcription of estrogen related receptor (ERR) and PPAR downstream genes. Mechanistically, miR-22 postranscriptionally inhibits peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), PPARα and sirtuin 1 (SIRT1) expression via a synergistic circuit, which may account for deleterious actions of unchecked miR-22 expression on the heart.


Ultrasound in Medicine and Biology | 2003

Doppler evaluation of peripheral vascular adaptations to transverse aortic banding in mice

Yi-Heng Li; Anilkumar K. Reddy; George E. Taffet; Lloyd H. Michael; Mark L. Entman; Craig J. Hartley

Abstract Transverse aortic banding in mice is commonly used to produce pressure overload, but the resulting cardiac hypertrophy is variable and the actual load produced is unknown. The purposes of the study were to characterize peripheral blood flow in banded mice using noninvasive Doppler methods, investigate whether changes in flow could predict the amount of cardiac hypertrophy induced and validate the simplified Bernoulli equation for estimating the pressure drop across the stenosis in very small vessels. Wild-type mice underwent aortic banding ( n = 15) or sham operation ( n = 6). Doppler velocity was measured in the right and left carotid arteries (RCA and LCA) 1 day later, and the heart weight/body weight ratio was measured at 7 days. The RCA/LCA peak velocity ratio at 1 day was significantly correlated with the heart weight/body weight ratio at 7 days after banding (r = 0.62, p p 2 ) can be used to estimate the pressure drop across the aortic band in mice noninvasively. (E-mail: [email protected])


American Journal of Human Genetics | 2012

Nitric-oxide supplementation for treatment of long-term complications in argininosuccinic aciduria.

Sandesh C.S. Nagamani; Philippe M. Campeau; Oleg A. Shchelochkov; Muralidhar H. Premkumar; Kilian Guse; Nicola Brunetti-Pierri; Yuqing Chen; Qin Sun; Yaoping Tang; Donna Palmer; Anilkumar K. Reddy; Li Li; Timothy C. Slesnick; Daniel I. Feig; Susan E. Caudle; David G. Harrison; Leonardo Salviati; Juan C. Marini; Nathan S. Bryan; Ayelet Erez; Brendan Lee

Argininosuccinate lyase (ASL) is required for the synthesis and channeling of L-arginine to nitric oxide synthase (NOS) for nitric oxide (NO) production. Congenital ASL deficiency causes argininosuccinic aciduria (ASA), the second most common urea-cycle disorder, and leads to deficiency of both ureagenesis and NO production. Subjects with ASA have been reported to develop long-term complications such as hypertension and neurocognitive deficits despite early initiation of therapy and the absence of documented hyperammonemia. In order to distinguish the relative contributions of the hepatic urea-cycle defect from those of the NO deficiency to the phenotype, we performed liver-directed gene therapy in a mouse model of ASA. Whereas the gene therapy corrected the ureagenesis defect, the systemic hypertension in mice could be corrected by treatment with an exogenous NO source. In an ASA subject with severe hypertension refractory to antihypertensive medications, monotherapy with NO supplements resulted in the long-term control of hypertension and a decrease in cardiac hypertrophy. In addition, the NO therapy was associated with an improvement in some neuropsychological parameters pertaining to verbal memory and nonverbal problem solving. Our data show that ASA, in addition to being a classical urea-cycle disorder, is also a model of congenital human NO deficiency and that ASA subjects could potentially benefit from NO supplementation. Hence, NO supplementation should be investigated for the long-term treatment of this condition.

Collaboration


Dive into the Anilkumar K. Reddy's collaboration.

Top Co-Authors

Avatar

George E. Taffet

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Craig J. Hartley

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Mark L. Entman

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Lloyd H. Michael

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Sridhar Madala

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Thuy T. Pham

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Nikolaos G. Frangogiannis

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yi-Heng Li

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Eric E. Lloyd

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Marcin Bujak

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge