Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anirban Maitra is active.

Publication


Featured researches published by Anirban Maitra.


Nature | 2014

A draft map of the human proteome

Min Sik Kim; Sneha M. Pinto; Derese Getnet; Raja Sekhar Nirujogi; Srikanth S. Manda; Raghothama Chaerkady; Dhanashree S. Kelkar; Ruth Isserlin; Shobhit Jain; Joji Kurian Thomas; Babylakshmi Muthusamy; Pamela Leal-Rojas; Praveen Kumar; Nandini A. Sahasrabuddhe; Lavanya Balakrishnan; Jayshree Advani; Bijesh George; Santosh Renuse; Lakshmi Dhevi N. Selvan; Arun H. Patil; Vishalakshi Nanjappa; Aneesha Radhakrishnan; Samarjeet Prasad; Tejaswini Subbannayya; Rajesh Raju; Manish Kumar; Sreelakshmi K. Sreenivasamurthy; Arivusudar Marimuthu; Gajanan Sathe; Sandip Chavan

The availability of human genome sequence has transformed biomedical research over the past decade. However, an equivalent map for the human proteome with direct measurements of proteins and peptides does not exist yet. Here we present a draft map of the human proteome using high-resolution Fourier-transform mass spectrometry. In-depth proteomic profiling of 30 histologically normal human samples, including 17 adult tissues, 7 fetal tissues and 6 purified primary haematopoietic cells, resulted in identification of proteins encoded by 17,294 genes accounting for approximately 84% of the total annotated protein-coding genes in humans. A unique and comprehensive strategy for proteogenomic analysis enabled us to discover a number of novel protein-coding regions, which includes translated pseudogenes, non-coding RNAs and upstream open reading frames. This large human proteome catalogue (available as an interactive web-based resource at http://www.humanproteomemap.org) will complement available human genome and transcriptome data to accelerate biomedical research in health and disease.


Cancer Research | 2004

An Epidermal Growth Factor Receptor Intron 1 Polymorphism Mediates Response to Epidermal Growth Factor Receptor Inhibitors

Maria L. Amador; Darin Oppenheimer; Sofía Perea; Anirban Maitra; George Cusati; Christi Iacobuzio-Donahue; Sharyn D. Baker; Raheela Ashfaq; Chris H. Takimoto; Arlene A. Forastiere; Manuel Hidalgo

This study tested the hypothesis that the number of CA single sequence repeat (CA-SSR) in the intron 1 of the epidermal growth factor receptor (egfr) gene, which affects transcription efficiency of the gene, is associated with the response to EGFR inhibitors. To this end, we determined the number of CA dinucleotides in the intron 1 of the egfr gene in a panel of 12 head and neck cancer cell lines that lack egfr gene amplification and measured the expression of EGFR (mRNA and protein), as well as response to EGFR inhibition. Cells with lower number of CA dinucleotides in the CA-SSR had higher expression of the EGFR gene and protein and were more sensitive to the inhibitory effects of erlotinib, a small molecule inhibitor of the EGFR tyrosine-kinase. Phenotypic modification by silencing EGFR mRNA expression in a susceptible cell line induced resistance to the drug. The number of CA dinucleotide was equivalent in genomic and tumor DNA obtained from 30 patients with head and neck cancer. In a clinical study in colorectal cancer, subjects with lower number of CA dinucleotide frequently developed skin toxicity, a feature that is related to the antitumor activity of this class of drugs. These results suggest that polymorphic variations in the intron 1 of the egfr gene is associated with response to EGFR inhibitors and may provide an explanation as to why the development of skin toxicity is associated with a favorable outcome in patients treated with these agents.


ACS Nano | 2009

Imaging Pancreatic Cancer Using Bioconjugated InP Quantum Dots

Ken Tye Yong; Hong Ding; Indrajit Roy; Wing-Cheung Law; Earl J. Bergey; Anirban Maitra; Paras N. Prasad

In this paper, we report the successful use of non-cadmium-based quantum dots (QDs) as highly efficient and nontoxic optical probes for imaging live pancreatic cancer cells. Indium phosphide (core)-zinc sulfide (shell), or InP/ZnS, QDs with high quality and bright luminescence were prepared by a hot colloidal synthesis method in nonaqueous media. The surfaces of these QDs were then functionalized with mercaptosuccinic acid to make them highly dispersible in aqueous media. Further bioconjugation with pancreatic cancer specific monoclonal antibodies, such as anticlaudin 4 and antiprostate stem cell antigen (anti-PSCA), to the functionalized InP/ZnS QDs, allowed specific in vitro targeting of pancreatic cancer cell lines (both immortalized and low passage ones). The receptor-mediated delivery of the bioconjugates was further confirmed by the observation of poor in vitro targeting in nonpancreatic cancer based cell lines which are negative for the claudin-4-receptor. These observations suggest the immense potential of InP/ZnS QDs as non-cadmium-based safe and efficient optical imaging nanoprobes in diagnostic imaging, particularly for early detection of cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer

A. Hunter Shain; Craig P. Giacomini; Karen Matsukuma; Collins Karikari; Murali D. Bashyam; Manuel Hidalgo; Anirban Maitra; Jonathan R. Pollack

Defining the molecular genetic alterations underlying pancreatic cancer may provide unique therapeutic insight for this deadly disease. Toward this goal, we report here an integrative DNA microarray and sequencing-based analysis of pancreatic cancer genomes. Notable among the alterations newly identified, genomic deletions, mutations, and rearrangements recurrently targeted genes encoding components of the SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex, including all three putative DNA binding subunits (ARID1A, ARID1B, and PBRM1) and both enzymatic subunits (SMARCA2 and SMARCA4). Whereas alterations of each individual SWI/SNF subunit occurred at modest-frequency, as mutational “hills” in the genomic landscape, together they affected at least one-third of all pancreatic cancers, defining SWI/SNF as a major mutational “mountain.” Consistent with a tumor-suppressive role, re-expression of SMARCA4 in SMARCA4-deficient pancreatic cancer cell lines reduced cell growth and promoted senescence, whereas its overexpression in a SWI/SNF-intact line had no such effect. In addition, expression profiling analyses revealed that SWI/SNF likely antagonizes Polycomb repressive complex 2, implicating this as one possible mechanism of tumor suppression. Our findings reveal SWI/SNF to be a central tumor suppressive complex in pancreatic cancer.


Modern Pathology | 2012

Loss of ATRX or DAXX expression and concomitant acquisition of the alternative lengthening of telomeres phenotype are late events in a small subset of MEN-1 syndrome pancreatic neuroendocrine tumors

Roeland F. De Wilde; Christopher M. Heaphy; Anirban Maitra; Alan K. Meeker; Barish H. Edil; Christopher L. Wolfgang; Trevor A. Ellison; Richard D. Schulick; I. Quintus Molenaar; Gerlof D. Valk; Menno R. Vriens; Inne H.M. Borel Rinkes; G. Johan A. Offerhaus; Ralph H. Hruban; Karen Matsukuma

Approximately 45% of sporadic well-differentiated pancreatic neuroendocrine tumors harbor mutations in either ATRX (alpha thalassemia/mental retardation X-linked) or DAXX (death domain-associated protein). These novel tumor suppressor genes encode nuclear proteins that interact with one another and function in chromatin remodeling at telomeric and peri-centromeric regions. Mutations in these genes are associated with loss of their protein expression and correlate with the alternative lengthening of telomeres phenotype. Patients with multiple endocrine neoplasia-1 (MEN-1) syndrome, genetically defined by a germ line mutation in the MEN1 gene, are predisposed to developing pancreatic neuroendocrine tumors and thus represent a unique model for studying the timing of ATRX and DAXX inactivation in pancreatic neuroendocrine tumor development. We characterized ATRX and DAXX protein expression by immunohistochemistry and telomere status by telomere-specific fluorescence in situ hybridization in 109 well-differentiated pancreatic neuroendocrine lesions from 28 MEN-1 syndrome patients. The study consisted of 47 neuroendocrine microadenomas (<0.5 cm), 50 pancreatic neuroendocrine tumors (≥0.5 cm), and 12 pancreatic neuroendocrine tumor lymph node metastases. Expression of ATRX and DAXX was intact in all 47 microadenomas, and none showed the alternative lengthening of telomeres phenotype. ATRX and/or DAXX expression was lost in 3 of 50 (6%) pancreatic neuroendocrine tumors. In all three of these, tumor size was ≥3 cm, and loss of ATRX and/or DAXX expression correlated with the alternative lengthening of telomeres phenotype. Concurrent lymph node metastases were present for two of the three tumors, and each metastasis displayed the same changes as the primary tumor. These findings establish the existence of ATRX and DAXX defects and the alternative lengthening of telomeres phenotype in pancreatic neuroendocrine tumors in the context of MEN-1 syndrome. The observation that ATRX and DAXX defects and the alternative lengthening of telomeres phenotype occurred only in pancreatic neuroendocrine tumors measuring ≥3 cm and their lymph node metastases suggests that these changes are late events in pancreatic neuroendocrine tumor development.


Molecular Cancer Therapeutics | 2008

Small-molecule inhibitor of the AP endonuclease 1/REF-1 E3330 inhibits pancreatic cancer cell growth and migration

Gang Ming Zou; Anirban Maitra

AP endonuclease 1 (APE1; also known as REF-1) contains a DNA repair domain and a redox regulation domain. APE1 is overexpressed in several human cancers, and disruption of APE1 function has detrimental effects on cancer cell viability. However, the selective contribution of the redox and the DNA repair domains to maintenance of cellular homeostasis in cancer has not been elucidated. In the present study, we used E3330, a small-molecule inhibitor of APE1 redox domain function, to interrogate the functional relevance of sustained redox function in pancreatic cancer. We show that E3330 significantly reduces the growth of human pancreatic cancer cells in vitro. This phenomenon was further confirmed by a small interfering RNA experiment to knockdown APE1 expression in pancreatic cancer cells. Further, the growth-inhibitory effects of E3330 are accentuated by hypoxia, and this is accompanied by striking inhibition in the DNA-binding ability of hypoxia-inducible factor-1α, a hypoxia-induced transcription factor. E3330 exposure promotes endogenous reactive oxygen species formation in pancreatic cancer cells, and the resulting oxidative stress is associated with higher levels of oxidized, and hence inactive, SHP-2, an essential protein tyrosine phosphatase that promotes cancer cell proliferation in its active state. Finally, E3330 treatment inhibits pancreatic cancer cell migration as assessed by in vitro chemokine assays. E3330 shows anticancer properties at multiple functional levels in pancreatic cancer, such as inhibition of cancer cell growth and migration. Inhibition of the APE1 redox function through pharmacologic means has the potential to become a promising therapeutic strategy in this disease. [Mol Cancer Ther 2008;7(7):2012–21]


ACS Applied Materials & Interfaces | 2009

Tumor targeting and imaging in live animals with functionalized semiconductor quantum rods

Ken Tye Yong; Rui Hu; Indrajit Roy; Hong Ding; Lisa Vathy; Earl J. Bergey; Masamichi Mizuma; Anirban Maitra; Paras N. Prasad

In this contribution, we demonstrate that highly luminescent CdSe/CdS/ZnS quantum rods (QRs) coated with PEGylated phospholipids and conjugated with cyclic RGD peptide can be successfully used for tumor targeting and imaging in live animals. The design of these targeted luminescent probes involves encapsulation of hydrophobic CdSe/CdS/ZnS QRs with PEGylated phospholipids, followed by conjugation of these PEGylated phospholipids to ligands that specifically target the tumor vasculature. In vivo optical imaging studies in nude mice bearing pancreatic cancer xenografts, both subcutaneous and orthotopic, indicate that the QR probes accumulate at tumor sites via the cyclic RGD peptides on the QR surface binding to the alpha(V)beta(3) integrins overexpressed in the tumor vasculature, following systemic injection. In vivo tumor detection studies showed no adverse effects even at a dose roughly 6.5 times higher than has been reported for in vivo imaging studies using quantum dots. Cytotoxicity studies indicated the absence of any toxic effect in the cellular and tissue levels arising from functionalized QRs. These results demonstrate the vast potential of QRs as bright, photostable, and biocompatible luminescent probes for the early diagnosis of cancer.


Nature Reviews Gastroenterology & Hepatology | 2012

Well-differentiated pancreatic neuroendocrine tumors: from genetics to therapy

Roeland F. De Wilde; Barish H. Edil; Ralph H. Hruban; Anirban Maitra

Well-differentiated pancreatic neuroendocrine tumors (PanNETs) comprise ∼1–3% of pancreatic neoplasms. Although long considered as reasonably benign lesions, PanNETs have considerable malignant potential, with a 5-year survival of ∼65% and a 10-year survival of 45% for resected lesions. As PanNETs have a low incidence, they have been understudied, with few advances made until the completion of their exomic sequencing in the past year. In this Review, we summarize some of the latest insights into the genetics of PanNETs, and their probable implications in the context of prognosis and therapy. In particular, we discuss two genes (DAXX and ATRX) that have collectively been identified as mutated in >40% of PanNETs, and the biological and prognostic implications of these novel mutations. The identification of recurrent somatic mutations within the mTOR signaling pathway and the therapeutic implications for personalized therapy in patients with PanNETs are also discussed. Finally, this Review outlines state-of-the-art advances in the biology of PanNETs that are of emerging translational importance.


Oncogene | 2014

Next-generation sequencing of endoscopic biopsies identifies ARID1A as a tumor-suppressor gene in Barrett’s esophagus

M. M. Streppel; S. Lata; M. Delabastide; Elizabeth A. Montgomery; J. S. Wang; Marcia I. Canto; A. M. MacGregor-Das; Sara I. Pai; F. H.M. Morsink; G. J. Offerhaus; E. Antoniou; Anirban Maitra; W. R. McCombie

The incidence of Barrett’s esophagus (BE)-associated esophageal adenocarcinoma (EAC) is increasing. Next-generation sequencing (NGS) provides an unprecedented opportunity to uncover genomic alterations during BE pathogenesis and progression to EAC, but treatment-naive surgical specimens are scarce. The objective of this study was to establish the feasibility of using widely available endoscopic mucosal biopsies for successful NGS, using samples obtained from a BE ‘progressor’. Paired-end whole-genome NGS was performed on the Illumina platform using libraries generated from mucosal biopsies of normal squamous epithelium (NSE), BE and EAC obtained from a patient who progressed to adenocarcinoma during endoscopic surveillance. Selective validation studies, including Sanger sequencing, immunohistochemistry and functional assays, were performed to confirm the NGS findings. NGS identified somatic nonsense mutations of AT-rich interactive domain 1A (SWI like) (ARID1A) and PPIE and an additional 37 missense mutations in BE and/or EAC, which were confirmed by Sanger sequencing. ARID1A mutations were detected in 15% (3/20) high-grade dysplasia (HGD)/EAC patients. Immunohistochemistry performed on an independent archival cohort demonstrated ARID1A protein loss in 0% (0/76), 4.9% (2/40), 14.3% (4/28), 16.0% (8/50) and 12.2% (12/98) of NSE, BE, low-grade dysplasia, HGD and EAC tissues, respectively, and was inversely associated with nuclear p53 accumulation (P=0.028). Enhanced cell growth, proliferation and invasion were observed on ARID1A knockdown in EAC cells. In addition, genes downstream of ARID1A that potentially contribute to the ARID1A knockdown phenotype were identified. Our studies establish the feasibility of using mucosal biopsies for NGS, which should enable the comparative analysis of larger ‘progressor’ versus ‘non-progressor’ cohorts. Further, we identify ARID1A as a novel tumor-suppressor gene in BE pathogenesis, reiterating the importance of aberrant chromatin in the metaplasia–dysplasia sequence.


Molecular Cancer Therapeutics | 2012

The gamma secretase inhibitor MRK-003 attenuates pancreatic cancer growth in preclinical models

Masamichi Mizuma; Zeshaan Rasheed; Shinichi Yabuuchi; Noriyuki Omura; Nathaniel R. Campbell; Roeland F. De Wilde; Elizabeth De Oliveira; Qing Zhang; Oscar Puig; William Matsui; Manuel Hidalgo; Anirban Maitra; N. V. Rajeshkumar

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy, with most patients facing an adverse clinical outcome. Aberrant Notch pathway activation has been implicated in the initiation and progression of PDAC, specifically the aggressive phenotype of the disease. We used a panel of human PDAC cell lines as well as patient-derived PDAC xenografts to determine whether pharmacologic targeting of Notch pathway could inhibit PDAC growth and potentiate gemcitabine sensitivity. MRK-003, a potent and selective γ-secretase inhibitor, treatment resulted in the downregulation of nuclear Notch1 intracellular domain, inhibition of anchorage-independent growth, and reduction of tumor-initiating cells capable of extensive self-renewal. Pretreatment of PDAC cells with MRK-003 in cell culture significantly inhibited the subsequent engraftment in immunocompromised mice. MRK-003 monotherapy significantly blocked tumor growth in 5 of 9 (56%) PDAC xenografts. A combination of MRK-003 and gemcitabine showed enhanced antitumor effects compared with gemcitabine in 4 of 9 (44%) PDAC xenografts, reduced tumor cell proliferation, and induced both apoptosis and intratumoral necrosis. Gene expression analysis of untreated tumors indicated that upregulation of NF-κB pathway components was predictive of sensitivity to MRK-003, whereas upregulation in B-cell receptor signaling and nuclear factor erythroid-derived 2-like 2 pathway correlated with response to the combination of MRK-003 with gemcitabine. Our findings strengthen the rationale for small-molecule inhibition of Notch signaling as a therapeutic strategy in PDAC. Mol Cancer Ther; 11(9); 1999–2009. ©2012 AACR.

Collaboration


Dive into the Anirban Maitra's collaboration.

Top Co-Authors

Avatar

Ralph H. Hruban

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Sarbaranjan Paria

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Sumanta Kumar Karan

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Amit Kumar Das

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Ranadip Bera

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Matthew H. Katz

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gauri R. Varadhachary

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

B. B. Khatua

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huamin Wang

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge