Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anis Karimpour-Fard is active.

Publication


Featured researches published by Anis Karimpour-Fard.


PLOS Biology | 2004

Lineage-specific gene duplication and loss in human and great ape evolution.

Andrew Fortna; Young Hyo Kim; Erik J. MacLaren; Kriste E Marshall; Gretchen Hahn; Lynne Meltesen; Matthew Brenton; Raquel L. Hink; Sonya Burgers; Tina Hernandez-Boussard; Anis Karimpour-Fard; Deborah H. Glueck; Loris McGavran; Rebecca Berry; Jonathan R. Pollack; James M. Sikela

Given that gene duplication is a major driving force of evolutionary change and the key mechanism underlying the emergence of new genes and biological processes, this study sought to use a novel genome-wide approach to identify genes that have undergone lineage-specific duplications or contractions among several hominoid lineages. Interspecies cDNA array-based comparative genomic hybridization was used to individually compare copy number variation for 39,711 cDNAs, representing 29,619 human genes, across five hominoid species, including human. We identified 1,005 genes, either as isolated genes or in clusters positionally biased toward rearrangement-prone genomic regions, that produced relative hybridization signals unique to one or more of the hominoid lineages. Measured as a function of the evolutionary age of each lineage, genes showing copy number expansions were most pronounced in human (134) and include a number of genes thought to be involved in the structure and function of the brain. This work represents, to our knowledge, the first genome-wide gene-based survey of gene duplication across hominoid species. The genes identified here likely represent a significant majority of the major gene copy number changes that have occurred over the past 15 million years of human and great ape evolution and are likely to underlie some of the key phenotypic characteristics that distinguish these species.


Nature Biotechnology | 2010

Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides

Joseph R. Warner; Philippa J. Reeder; Anis Karimpour-Fard; Lauren B.A. Woodruff; Ryan T. Gill

A fundamental goal in biotechnology and biology is the development of approaches to better understand the genetic basis of traits. Here we report a versatile method, trackable multiplex recombineering (TRMR), whereby thousands of specific genetic modifications are created and evaluated simultaneously. To demonstrate TRMR, in a single day we modified the expression of >95% of the genes in Escherichia coli by inserting synthetic DNA cassettes and molecular barcodes upstream of each gene. Barcode sequences and microarrays were then used to quantify population dynamics. Within a week we mapped thousands of genes that affect E. coli growth in various media (rich, minimal and cellulosic hydrolysate) and in the presence of several growth inhibitors (β-glucoside, D-fucose, valine and methylglyoxal). This approach can be applied to a broad range of traits to identify targets for future genome-engineering endeavors.


Nature | 2014

Gibbon genome and the fast karyotype evolution of small apes.

Lucia Carbone; R. Alan Harris; Sante Gnerre; Krishna R. Veeramah; Belen Lorente-Galdos; John Huddleston; Thomas J. Meyer; Javier Herrero; Christian Roos; Bronwen Aken; Fabio Anaclerio; Nicoletta Archidiacono; Carl Baker; Daniel Barrell; Mark A. Batzer; Kathryn Beal; Antoine Blancher; Craig Bohrson; Markus Brameier; Michael S. Campbell; Claudio Casola; Giorgia Chiatante; Andrew Cree; Annette Damert; Pieter J. de Jong; Laura Dumas; Marcos Fernandez-Callejo; Paul Flicek; Nina V. Fuchs; Ivo Gut

Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ∼5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat.


Veterinary Pathology | 2013

Molecular Profiling Reveals Prognostically Significant Subtypes of Canine Lymphoma

Aric M. Frantz; Aaron L. Sarver; Daisuke Ito; Tzulip Phang; Anis Karimpour-Fard; Milcah C. Scott; Victor E. Valli; Kerstin Lindblad-Toh; Kristine Burgess; B.D. Husbands; Michael Henson; Antonella Borgatti; William C. Kisseberth; Lawrence Hunter; Matthew Breen; Timothy D. O’Brien; Jaime F. Modiano

We performed genomewide gene expression analysis of 35 samples representing 6 common histologic subtypes of canine lymphoma and bioinformatics analyses to define their molecular characteristics. Three major groups were defined on the basis of gene expression profiles: (1) low-grade T-cell lymphoma, composed entirely by T-zone lymphoma; (2) high-grade T-cell lymphoma, consisting of lymphoblastic T-cell lymphoma and peripheral T-cell lymphoma not otherwise specified; and (3) B-cell lymphoma, consisting of marginal B-cell lymphoma, diffuse large B-cell lymphoma, and Burkitt lymphoma. Interspecies comparative analyses of gene expression profiles also showed that marginal B-cell lymphoma and diffuse large B-cell lymphoma in dogs and humans might represent a continuum of disease with similar drivers. The classification of these diverse tumors into 3 subgroups was prognostically significant, as the groups were directly correlated with event-free survival. Finally, we developed a benchtop diagnostic test based on expression of 4 genes that can robustly classify canine lymphomas into one of these 3 subgroups, enabling a direct clinical application for our results.


Metabolic Engineering | 2008

A genomics approach to improve the analysis and design of strain selections.

Tanya Warnecke; Michael Lynch; Anis Karimpour-Fard; Nicholas R. Sandoval; Ryan T. Gill

Strain engineering has been traditionally centered on the use of mutation, selection, and screening to develop improved strains. Although mutational and screening methods are well-characterized, selection remains poorly understood. We hypothesized that we could use a genome-wide method for assessing laboratory selections to design selections with enhanced sensitivity (true positives) and specificity (true negatives) towards a single desired phenotype. To test this hypothesis, we first applied multi-SCale Analysis of Library Enrichments (SCALEs) to identify genes conferring increased fitness in continuous flow selections with increasing levels of 3-hydroxypropionic acid (3-HP). We found that this selection not only enriched for 3-HP tolerance phenotypes but also for wall adherence phenotypes (41% false positives). Using this genome-wide data, we designed a serial-batch selection with a decreasing 3-HP gradient. Further examination by ROC analysis confirmed that the serial-batch approach resulted in significantly increased sensitivity (46%) and specificity (10%) for our desired phenotype (3-HP tolerance).


Physiological Genomics | 2011

Metabolic cycles in a circannual hibernator

L. Elaine Epperson; Anis Karimpour-Fard; Lawrence Hunter; Sandra L. Martin

Hibernation as manifested in ground squirrels is arguably the most plastic and extreme of physiological phenotypes in mammals. Homeostasis is challenged by prolonged fasting accompanied by heterothermy, yet must be facilitated for survival. We performed LC and GC-MS metabolomic profiling of plasma samples taken reproducibly during seven natural stages of the hibernators year, three in summer and four in winter (each n ≥ 5), employing a nontargeted approach to define the metabolite shifts associated with the phenotype. We quantified 231 named metabolites; 106 of these altered significantly, demarcating a cycle within a cycle where torpor-arousal cycles recur during the winter portion of the seasonal cycle. A number of robust hibernation biomarkers that alter with season and winter stage are identified, including specific free fatty acids, antioxidants, and previously unpublished modified amino acids that are likely to be associated with the fasting state. The major pattern in metabolite levels is one of either depletion or accrual during torpor, followed by reversal to an apparent homeostatic level by interbout arousal. This finding provides new data that strongly support the predictions of a long-standing hypothesis that periodic arousals are necessary to restore metabolic homeostasis.


Metabolic Engineering | 2010

Rapid dissection of a complex phenotype through genomic-scale mapping of fitness altering genes.

Tanya Warnecke; Michael Lynch; Anis Karimpour-Fard; Matthew L. Lipscomb; P. Handke; Tirzah Y Mills; C.J. Ramey; T. Hoang; Ryan T. Gill

The understanding and engineering of complex phenotypes is a critical issue in biotechnology. Conventional approaches for engineering such phenotypes are often resource intensive, marginally effective, and unable to generate the level of biological understanding desired. Here, we report a new approach for rapidly dissecting a complex phenotype that is based upon the combination of genome-scale growth phenotype data, precisely targeted growth selections, and informatic strategies for abstracting and summarizing data onto coherent biological processes. We measured at high resolution (125 NT) and for the entire genome the effect of increased gene copy number on overall biological fitness corresponding to the expression of a complex phenotype (tolerance to 3-hydroxypropionic acid (3-HP) in Escherichia coli). Genetic level fitness data were then mapped according to various definitions of gene-gene interaction in order to generate network-level fitness data. When metabolic pathways were used to define interactions, we observed that genes within the chorismate and threonine super-pathways were disproportionately enriched throughout selections for 3-HP tolerance. Biochemical and genetic studies demonstrated that alleviation of inhibition of either of these super-pathways was sufficient to mitigate 3-HP toxicity. These data enabled the design of combinatorial modifications that almost completely offset 3-HP toxicity in minimal medium resulting in a 20 g/L and 25-fold increase in tolerance and specific growth, respectively.


BMC Genomics | 2006

A comparison of alternative 60-mer probe designs in an in-situ synthesized oligonucleotide microarray.

Danielle L Leiske; Anis Karimpour-Fard; Patrick S. Hume; Benjamin D. Fairbanks; Ryan T. Gill

BackgroundDNA microarrays have proven powerful for functional genomics studies. Several technologies exist for the generation of whole-genome arrays. It is well documented that 25mer probes directed against different regions of the same gene produce variable signal intensity values. However, the extent to which this is true for probes of greater length (60mers) is not well characterized. Moreover, this information has not previously been reported for whole-genome arrays designed against bacteria, whose genomes may differ substantially in characteristics directly affecting microarray performance.ResultsWe report here an analysis of alternative 60mer probe designs for an in-situ synthesized oligonucleotide array for the GC rich, β-proteobacterium Burkholderia cenocepacia. Probes were designed using the ArrayOligoSel3.5 software package and whole-genome microarrays synthesized by Agilent, Inc. using their in-situ, ink-jet technology platform. We first validated the quality of the microarrays as demonstrated by an average signal to noise ratio of >1000. Next, we determined that the variance of replicate probes (1178 total probes examined) of identical sequence was 3.8% whereas the variance of alternative probes (558 total alternative probes examined) designs was 9.5%. We determined that depending upon the definition, about 2.4% of replicate and 7.8% of alternative probes produced outlier conclusions. Finally, we determined none of the probe design subscores (GC content, internal repeat, binding energy and self annealment) produced by ArrayOligoSel3.5 were predictive or probes that produced outlier signals.ConclusionOur analysis demonstrated that the use of multiple probes per target sequence is not essential for in-situ synthesized 60mer oligonucleotide arrays designed against bacteria. Although probes producing outlier signals were identified, the use of ratios results in less than 10% of such outlier conclusions. We also determined that several different measures commonly utilized in probe design were not predictive of outlier probes.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Skeletal muscle proteomics: carbohydrate metabolism oscillates with seasonal and torpor-arousal physiology of hibernation

Allyson G. Hindle; Anis Karimpour-Fard; L. Elaine Epperson; Lawrence Hunter; Sandra L. Martin

The physiology of small mammalian hibernators shifts profoundly over a year, from summer homeothermy to winter heterothermy. Torpor-arousal cycles define high-amplitude tissue activity fluctuations in winter, particularly for skeletal muscle, which contributes to the energetically demanding rewarming process via shivering. To better understand the biochemistry underlying summer-winter and torpor-arousal transitions, we applied two-dimensional gel electrophoresis coupled with liquid chromatography/mass spectrometry/mas spectrometry to the soluble proteins from hindlimb muscle of 13-lined ground squirrels (Ictidomys tridecemlineatus) in two summer and six winter states. Two hundred sixteen protein spots differed by sampled state. Significantly, intrawinter protein adjustment was a minor component of the dataset despite large discrepancies in muscle activity level among winter states; rather, the bulk of differences (127/138 unequivocally identified proteins spots) occurred between summer and winter. We did not detect any proteomic signatures of skeletal muscle atrophy in this hibernator nor any differential seasonal regulation of protein metabolism. Instead, adjustments to metabolic substrate preferences dominated the detected proteomic differences. Pathways of carbohydrate metabolism (glycolysis and gluconeogenesis) were summer enriched, whereas the winter proteome was enriched for fatty acid β-oxidation. Nevertheless, our data suggest that some reliance on carbohydrate reserves is maintained during winter. Phosphoglucomutase (PGM1), which reversibly prepares glucose subunits for either glycolysis or glycogenesis, showed apparent winter state-specific phosphorylation. PGM1 was phosphorylated during rewarming and dephosphorylated by interbout arousal, implying that glucose supplements lipid fuels during rewarming. This, along with winter elevation of TCA cycle enzymes, suggests that hindlimb muscles are primed for rapid energy production and that carbohydrates are an important fuel for shivering thermogenesis.


Physiological Genomics | 2011

Multistate proteomics analysis reveals novel strategies used by a hibernator to precondition the heart and conserve ATP for winter heterothermy

Katharine R. Grabek; Anis Karimpour-Fard; L. Elaine Epperson; Allyson G. Hindle; Lawrence Hunter; Sandra L. Martin

The hibernators heart functions continuously and avoids damage across the wide temperature range of winter heterothermy. To define the molecular basis of this phenotype, we quantified proteomic changes in the 13-lined ground squirrel heart among eight distinct physiological states encompassing the hibernators year. Unsupervised clustering revealed a prominent seasonal separation between the summer homeotherms and winter heterotherms, whereas within-season state separation was limited. Further, animals torpid in the fall were intermediate to summer and winter, consistent with the transitional nature of this phase. A seasonal analysis revealed that the relative abundances of protein spots were mainly winter-increased. The winter-elevated proteins were involved in fatty acid catabolism and protein folding, whereas the winter-depleted proteins included those that degrade branched-chain amino acids. To identify further state-dependent changes, protein spots were re-evaluated with respect to specific physiological state, confirming the predominance of seasonal differences. Additionally, chaperone and heat shock proteins increased in winter, including HSPA4, HSPB6, and HSP90AB1, which have known roles in protecting against ischemia-reperfusion injury and apoptosis. The most significant and greatest fold change observed was a disappearance of phospho-cofilin 2 at low body temperature, likely a strategy to preserve ATP. The robust summer-to-winter seasonal proteomic shift implies that a winter-protected state is orchestrated before prolonged torpor ensues. Additionally, the general preservation of the proteome during winter hibernation and an increase of stress response proteins, together with dephosphorylation of cofilin 2, highlight the importance of ATP-conserving mechanisms for winter cardioprotection.

Collaboration


Dive into the Anis Karimpour-Fard's collaboration.

Top Co-Authors

Avatar

Lawrence Hunter

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Carmen C. Sucharov

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Shelley D. Miyamoto

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Ryan T. Gill

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Brian L. Stauffer

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

L. Elaine Epperson

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Karin Nunley

Anschutz Medical Campus

View shared research outputs
Top Co-Authors

Avatar

Deborah H. Glueck

Colorado School of Public Health

View shared research outputs
Top Co-Authors

Avatar

Michael R. Bristow

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Russell P. Bowler

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge