Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anis Larbi is active.

Publication


Featured researches published by Anis Larbi.


Immunity | 2012

Human Tissues Contain CD141hi Cross-Presenting Dendritic Cells with Functional Homology to Mouse CD103+ Nonlymphoid Dendritic Cells

Muzlifah Haniffa; Amanda Shin; Venetia Bigley; Naomi McGovern; Pearline Teo; Peter See; Pavandip Singh Wasan; Xiao-Nong Wang; Frano Malinarich; Benoit Malleret; Anis Larbi; Pearlie W.W. Tan; Helen Zhao; Michael Poidinger; Sarah Pagan; Sharon Cookson; Rachel Dickinson; Ian Dimmick; Ruth F. Jarrett; Laurent Rénia; John Tam; Colin Song; John Connolly; Jerry Chan; Adam J. Gehring; Antonio Bertoletti; Matthew Collin; Florent Ginhoux

Summary Dendritic cell (DC)-mediated cross-presentation of exogenous antigens acquired in the periphery is critical for the initiation of CD8+ T cell responses. Several DC subsets are described in human tissues but migratory cross-presenting DCs have not been isolated, despite their potential importance in immunity to pathogens, vaccines, and tumors and tolerance to self. Here, we identified a CD141hi DC present in human interstitial dermis, liver, and lung that was distinct from the majority of CD1c+ and CD14+ tissue DCs and superior at cross-presenting soluble antigens. Cutaneous CD141hi DCs were closely related to blood CD141+ DCs, and migratory counterparts were found among skin-draining lymph node DCs. Comparative transcriptomic analysis with mouse showed tissue DC subsets to be conserved between species and permitted close alignment of human and mouse DC subsets. These studies inform the rational design of targeted immunotherapies and facilitate translation of mouse functional DC biology to the human setting.


Biogerontology | 2010

Aging, frailty and age-related diseases

Tamas Fulop; Anis Larbi; Jacek M. Witkowski; Janet E. McElhaney; Mark Loeb; Graham Pawelec

The concept of frailty as a medically distinct syndrome has evolved based on the clinical experience of geriatricians and is clinically well recognizable. Frailty is a nonspecific state of vulnerability, which reflects multisystem physiological change. These changes underlying frailty do not always achieve disease status, so some people, usually very elderly, are frail without a specific life threatening illness. Current thinking is that not only physical but also psychological, cognitive and social factors contribute to this syndrome and need to be taken into account in its definition and treatment. Together, these signs and symptoms seem to reflect a reduced functional reserve and consequent decrease in adaptation (resilience) to any sort of stressor and perhaps even in the absence of extrinsic stressors. The overall consequence is that frail elderly are at higher risk for accelerated physical and cognitive decline, disability and death. All these characteristics associated with frailty can easily be applied to the definition and characterization of the aging process per se and there is little consensus in the literature concerning the physiological/biological pathways associated with or determining frailty. It is probably true to say that a consensus view would implicate heightened chronic systemic inflammation as a major contributor to frailty. This review will focus on the relationship between aging, frailty and age-related diseases, and will highlight possible interventions to reduce the occurrence and effects of frailty in elderly people.


Reviews in Medical Virology | 2009

Cytomegalovirus and human immunosenescence

Graham Pawelec; Evelyna Derhovanessian; Anis Larbi; Jan Strindhall; Anders Wikby

‘Immunosenescence’ is an imprecise term used to describe deleterious age‐associated changes to immune parameters observed in all mammals studied so far. Primarily anecdotal evidence implies that failing immunity is responsible for the increased incidence and severity of infectious disease in old people. However, there is a serious dearth of accurate hard data concerning the actual cause of death in the elderly and the contribution thereto of the multitude of age‐associated alterations measured in the immune system. Cross‐sectional studies comparing those currently young with those currently old reveal a large number of differences in the distribution of immune cell types in the blood, and to some extent the functional integrity of those cells. Many of these parameters differ markedly between individuals infected with CMV and uninfected people, regardless of infection with other persistent herpesviruses. The adaptive arm of immunity appears to be more seriously affected than the innate arm, particularly the T lymphocytes. However, cross‐sectional studies suffer the disadvantage that like is not being compared with like, because the conditions applied during the entire life course of the currently elderly were different from those applied now to the young. These differences in environment, nutrition, pathology and possibly genetics, rather than merely age, may be expected to influence the parameters studied. Moreover, pathogen exposure of the currently elderly was also different from contemporary exposure, probably including CMV. Some of the problems associated with cross‐sectional studies can be overcome by performing longitudinal studies, as pointed out in an earlier analysis of the Baltimore Longitudinal Ageing study looking at lymphocyte numbers. However, longitudinal studies are challenging in humans. Nonetheless, the pioneering Swedish OCTO/NONA studies of the very elderly which for the first time included a range of immune parameters, have identified a set of immune parameters predicting mortality at 2, 4 and 6 year follow‐up; CMV infection makes a material contribution to this so‐called ‘immune risk profile (IRP)’. Whether the IRP is informative in younger individuals and the mechanism of the CMV effect is discussed in this review. Copyright


Immunity | 2015

C-Myb+ Erythro-Myeloid Progenitor-Derived Fetal Monocytes Give Rise to Adult Tissue-Resident Macrophages

Guillaume Hoeffel; Jinmiao Chen; Yonit Lavin; Donovan Low; Francisca F. Almeida; Peter See; Anna E. Beaudin; Josephine Lum; Ivy Low; E. Camilla Forsberg; Michael Poidinger; Francesca Zolezzi; Anis Larbi; Lai Guan Ng; Jerry Chan; Melanie Greter; Burkhard Becher; Igor M. Samokhvalov; Miriam Merad; Florent Ginhoux

Although classified as hematopoietic cells, tissue-resident macrophages (MFs) arise from embryonic precursors that seed the tissues prior to birth to generate a self-renewing population, which is maintained independently of adult hematopoiesis. Here we reveal the identity of these embryonic precursors using an in utero MF-depletion strategy and fate-mapping of yolk sac (YS) and fetal liver (FL) hematopoiesis. We show that YS MFs are the main precursors of microglia, while most other MFs derive from fetal monocytes (MOs). Both YS MFs and fetal MOs arise from erythro-myeloid progenitors (EMPs) generated in the YS. In the YS, EMPs gave rise to MFs without monocytic intermediates, while EMP seeding the FL upon the establishment of blood circulation acquired c-Myb expression and gave rise to fetal MOs that then seeded embryonic tissues and differentiated into MFs. Thus, adult tissue-resident MFs established from hematopoietic stem cell-independent embryonic precursors arise from two distinct developmental programs.


Physiology | 2008

Aging of the Immune System as a Prognostic Factor for Human Longevity

Anis Larbi; Claudio Franceschi; Dawn J. Mazzatti; Rafael Solana; Anders Wikby; Graham Pawelec

Accumulating data are documenting an inverse relationship between immune status, response to vaccination, health, and longevity, suggesting that the immune system becomes less effective with advancing age and that this is clinically relevant. The mechanisms and consequences of age-associated immune alterations, designated immunosenescence, are briefly reviewed here.


Aging Cell | 2004

Signal transduction and functional changes in neutrophils with aging.

Tamas Fulop; Anis Larbi; Nadine Douziech; Carl Fortin; Kal-Philippe Guérard; Olivier Lesur; Abdelouahed Khalil; Gilles Dupuis

It is well known that the immune response decreases during aging, leading to a higher susceptibility to infections, cancers and autoimmune disorders. Most widely studied have been alterations in the adaptive immune response. Recently, the role of the innate immune response as a first‐line defence against bacterial invasion and as a modulator of the adaptive immune response has become more widely recognized. One of the most important cell components of the innate response is neutrophils and it is therefore important to elucidate their function during aging. With aging there is an alteration of the receptor‐driven functions of human neutrophils, such as superoxide anion production, chemotaxis and apoptosis. One of the alterations underlying these functional changes is a decrease in signalling elicited by specific receptors. Alterations were also found in the neutrophil membrane lipid rafts. These alterations in neutrophil functions and signal transduction that occur during aging might contribute to the significant increase in infections in old age.


Annals of the New York Academy of Sciences | 2007

Cytomegalovirus infection: A driving force in human T cell immunosenescence

Sven Koch; Anis Larbi; Dennis Özcelik; Rafael Solana; Cécile Gouttefangeas; Sebastian Attig; Anders Wikby; Jan Strindhall; Claudio Franceschi; Graham Pawelec

Abstract:  The human immune system evolved to defend the organism against pathogens, but is clearly less well able to do so in the elderly, resulting in greater morbidity and mortality due to infectious disease in old people, and higher healthcare costs. Many age‐associated immune alterations have been reported over the years, of which probably the changes in T cell immunity, often manifested dramatically as large clonal expansions of cells of limited antigen specificity together with a marked shrinkage of the T cell antigen receptor repertoire, are the most notable. It has recently emerged that the common herpesvirus, cytomegalovirus (CMV), which establishes persistent, life‐long infection, usually asymptomatically, may well be the driving force behind clonal expansions and altered phenotypes and functions of CD8 cells seen in most old people. In those few who are not CMV‐infected, another even more common herpesvirus, the Epstein‐Barr virus, appears to have the same effect. These virus‐driven changes are less marked in “successfully aged” centenarians, but most marked in people whom longitudinal studies have shown to be at higher risk of death, that is, those possessing an “immune risk profile” (IRP) characterized by an inverted CD4:8 ratio (caused by the accumulation primarily of CD8+ CD28− cells). These findings support the hypothesis that persistent herpesviruses, especially CMV, act as chronic antigenic stressors and play a major causative role in immunosenescence and associated mortality.


Immunity & Ageing | 2008

Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people.

Sven Koch; Anis Larbi; Evelyna Derhovanessian; Dennis Özcelik; Elissaveta Naumova; Graham Pawelec

BackgroundT cell-mediated immunity in elderly people is compromised in ways reflected in the composition of the peripheral T cell pool. The advent of polychromatic flow cytometry has made analysis of cell subsets feasible in unprecedented detail.ResultsHere we document shifts in subset distribution within naïve (N), central memory (CM) and effector memory (EM) cells defined by CD45RA and CCR7 expression in the elderly, additionally using the costimulatory receptors CD27 and CD28, as well as the coinhibitory receptors CD57 and KLRG-1, to further dissect these. Although differences between young and old were more marked in CD8 than in CD4 cells, a similar overall pattern prevailed in both. Thus, the use of all these markers together, and inclusion of assays of proliferation and cytokine secretion, may enable the construction of a differentiation scheme applicable to CD4 as well as CD8 cells, with the model (based on Romero et al.) suggesting the progression N→CM→EM1→EM2→pE1→pE2→EM4→EM3→E end-stage non-proliferative effector cells.ConclusionOverall, the results suggest that both differences in subset distribution and differences between subsets are responsible for age-related changes in CD8 cells but that differences within rather than between subsets are more prominent for CD4 cells.


Frontiers in Immunology | 2013

Human T Cell Aging and the Impact of Persistent Viral Infections

Tamas Fulop; Anis Larbi; Graham Pawelec

Aging is associated with a dysregulation of the immune response, loosely termed “immunosenescence.” Each part of the immune system is influenced to some extent by the aging process. However, adaptive immunity seems more extensively affected and among all participating cells it is the T cells that are most altered. There is a large body of experimental work devoted to the investigation of age-associated differences in T cell phenotypes and functions in young and old individuals, but few longitudinal studies in humans actually delineating changes at the level of the individual. In most studies, the number and proportion of late-differentiated T cells, especially CD8+ T cells, is reported to be higher in the elderly than in the young. Limited longitudinal studies suggest that accumulation of these cells is a dynamic process and does indeed represent an age-associated change. Accumulations of such late-stage cells may contribute to the enhanced systemic pro-inflammatory milieu commonly seen in older people. We do not know exactly what causes these observed changes, but an understanding of the possible causes is now beginning to emerge. A favored hypothesis is that these events are at least partly due to the effects of the maintenance of essential immune surveillance against persistent viral infections, notably Cytomegalovirus (CMV), which may exhaust the immune system over time. It is still a matter of debate as to whether these changes are compensatory and beneficial or pathological and detrimental to the proper functioning of the immune system and whether they impact longevity. Here, we will review present knowledge of T cell changes with aging and their relation to chronic viral and possibly other persistent infections.


Immunity | 2016

Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species.

Martin Guilliams; Charles-Antoine Dutertre; Charlotte L. Scott; Naomi McGovern; Dorine Sichien; Svetoslav Chakarov; Sofie Van Gassen; Jinmiao Chen; Michael Poidinger; Sofie De Prijck; Simon Tavernier; Ivy Low; Sergio Erdal Irac; Citra Nurfarah Zaini Mattar; Hermi Rizal Bin Sumatoh; Gillian Low; Tam John Kit Chung; Dedrick Kok Hong Chan; Ker-Kan Tan; Tony Lim Kiat Hon; Even Fossum; Bjarne Bogen; Mahesh Choolani; Jerry Kok Yen Chan; Anis Larbi; Hervé Luche; Sandrine Henri; Yvan Saeys; Evan W. Newell; Bart N. Lambrecht

Summary Dendritic cells (DCs) are professional antigen-presenting cells that hold great therapeutic potential. Multiple DC subsets have been described, and it remains challenging to align them across tissues and species to analyze their function in the absence of macrophage contamination. Here, we provide and validate a universal toolbox for the automated identification of DCs through unsupervised analysis of conventional flow cytometry and mass cytometry data obtained from multiple mouse, macaque, and human tissues. The use of a minimal set of lineage-imprinted markers was sufficient to subdivide DCs into conventional type 1 (cDC1s), conventional type 2 (cDC2s), and plasmacytoid DCs (pDCs) across tissues and species. This way, a large number of additional markers can still be used to further characterize the heterogeneity of DCs across tissues and during inflammation. This framework represents the way forward to a universal, high-throughput, and standardized analysis of DC populations from mutant mice and human patients.

Collaboration


Dive into the Anis Larbi's collaboration.

Top Co-Authors

Avatar

Tamas Fulop

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar

Graham Pawelec

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar

Gilles Dupuis

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl Fortin

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar

Tze Pin Ng

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Nadine Douziech

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Frost

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar

Florent Ginhoux

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge