Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anisha Korde is active.

Publication


Featured researches published by Anisha Korde.


Nature | 2012

A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis

Pontus Boström; Jun Wu; Mark P. Jedrychowski; Anisha Korde; Li Ye; James C. Lo; Kyle A. Rasbach; Elisabeth A. Boström; Jang Hyun Choi; Jonathan Z. Long; Shingo Kajimura; Maria Cristina Zingaretti; Birgitte F. Vind; Hua Tu; Saverio Cinti; Kurt Højlund; Steven P. Gygi; Bruce M. Spiegelman

Exercise benefits a variety of organ systems in mammals, and some of the best-recognized effects of exercise on muscle are mediated by the transcriptional co-activator PPAR-γ co-activator-1 α (PGC1-α). Here we show in mouse that PGC1-α expression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. Irisin acts on white adipose cells in culture and in vivo to stimulate UCP1 expression and a broad program of brown-fat-like development. Irisin is induced with exercise in mice and humans, and mildly increased irisin levels in the blood cause an increase in energy expenditure in mice with no changes in movement or food intake. This results in improvements in obesity and glucose homeostasis. Irisin could be therapeutic for human metabolic disease and other disorders that are improved with exercise.


Nature | 2017

Crystal structures of agonist-bound human cannabinoid receptor CB1

Tian Hua; Kiran Vemuri; Spyros P. Nikas; Robert B. Laprairie; Yiran Wu; Lu Qu; Mengchen Pu; Anisha Korde; Shan Jiang; Jo-Hao Ho; Gye Won Han; Kang Ding; Xuanxuan Li; Haiguang Liu; Michael A. Hanson; Suwen Zhao; Laura M. Bohn; Alexandros Makriyannis; Raymond C. Stevens; Zhi-Jie Liu

The cannabinoid receptor 1 (CB1) is the principal target of the psychoactive constituent of marijuana, the partial agonist Δ9-tetrahydrocannabinol (Δ9-THC). Here we report two agonist-bound crystal structures of human CB1 in complex with a tetrahydrocannabinol (AM11542) and a hexahydrocannabinol (AM841) at 2.80 Å and 2.95 Å resolution, respectively. The two CB1–agonist complexes reveal important conformational changes in the overall structure, relative to the antagonist-bound state, including a 53% reduction in the volume of the ligand-binding pocket and an increase in the surface area of the G-protein-binding region. In addition, a ‘twin toggle switch’ of Phe2003.36 and Trp3566.48 (superscripts denote Ballesteros–Weinstein numbering) is experimentally observed and appears to be essential for receptor activation. The structures reveal important insights into the activation mechanism of CB1 and provide a molecular basis for predicting the binding modes of Δ9-THC, and endogenous and synthetic cannabinoids. The plasticity of the binding pocket of CB1 seems to be a common feature among certain class A G-protein-coupled receptors. These findings should inspire the design of chemically diverse ligands with distinct pharmacological properties.


Molecular Membrane Biology | 2010

A review of multifunctional nanoemulsion systems to overcome oral and CNS drug delivery barriers.

Srinivas Ganta; Dipti Deshpande; Anisha Korde; Mansoor Amiji

Abstract The oral and central nervous systems (CNS) present a unique set of barriers to the delivery of important diagnostic and therapeutic agents. Extensive research over the past few years has enabled a better understanding of these physical and biological barriers based on tight cellular junctions and expression of active transporters and metabolizing enzymes at the luminal surfaces of the gastrointestinal (GI) tract and the blood-brain barrier (BBB). This review focuses on the recent understanding of transport across the GI tract and BBB and the development of nanotechnology-based delivery strategies that can enhance bioavailability of drugs. Multifunctional lipid nanosystems, such as oil-in-water nanoemulsions, that integrate enhancement in permeability, tissue and cell targeting, imaging, and therapeutic functions are especially promising. Based on strategic choice of edible oils, surfactants and additional surface modifiers, and different types of payloads, rationale design of multifunctional nanoemulsions can serve as a safe and effective delivery vehicle across oral and CNS barriers.


Journal of Medicinal Chemistry | 2016

Novel Electrophilic and Photoaffinity Covalent Probes for Mapping the Cannabinoid 1 Receptor Allosteric Site(s)

Pushkar M. Kulkarni; Abhijit R. Kulkarni; Anisha Korde; Ritesh Tichkule; Robert B. Laprairie; Eileen M. Denovan-Wright; Han Zhou; David R. Janero; Nikolai Zvonok; Alexandros Makriyannis; Maria Grazia Cascio; Roger G. Pertwee; Ganesh A. Thakur

Undesirable side effects associated with orthosteric agonists/antagonists of cannabinoid 1 receptor (CB1R), a tractable target for treating several pathologies affecting humans, have greatly limited their translational potential. Recent discovery of CB1R negative allosteric modulators (NAMs) has renewed interest in CB1R by offering a potentially safer therapeutic avenue. To elucidate the CB1R allosteric binding motif and thereby facilitate rational drug discovery, we report the synthesis and biochemical characterization of first covalent ligands designed to bind irreversibly to the CB1R allosteric site. Either an electrophilic or a photoactivatable group was introduced at key positions of two classical CB1R NAMs: Org27569 (1) and PSNCBAM-1 (2). Among these, 20 (GAT100) emerged as the most potent NAM in functional assays, did not exhibit inverse agonism, and behaved as a robust positive allosteric modulator of binding of orthosteric agonist CP55,940. This novel covalent probe can serve as a useful tool for characterizing CB1R allosteric ligand-binding motifs.


Nature | 2012

A PGC1α-dependent myokine that drives browning of white fat and thermogenesis

Pontus Boström; Jun Wu; Mark P. Jedrychowski; Anisha Korde; Li Ye; James C. Lo; Kyle A. Rasbach; Elisabeth A. Boström; Jang Hyun Choi; Jonathan Z. Long; Shingo Kajimura; Maria Cristina Zingaretti; Birgitte F. Vind; Hua Tu; Saverio Cinti; Kurt Højlund; Steven P. Gygi; Bruce M. Spiegelman

Exercise benefits a variety of organ systems in mammals, and some of the best-recognized effects of exercise on muscle are mediated by the transcriptional co-activator PPAR-γ co-activator-1 α (PGC1-α). Here we show in mouse that PGC1-α expression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. Irisin acts on white adipose cells in culture and in vivo to stimulate UCP1 expression and a broad program of brown-fat-like development. Irisin is induced with exercise in mice and humans, and mildly increased irisin levels in the blood cause an increase in energy expenditure in mice with no changes in movement or food intake. This results in improvements in obesity and glucose homeostasis. Irisin could be therapeutic for human metabolic disease and other disorders that are improved with exercise.


British Journal of Pharmacology | 2017

Gαs signalling of the CB1 receptor and the influence of receptor number

David B. Finlay; Erin E. Cawston; Natasha L. Grimsey; Morag R. Hunter; Anisha Korde; V. Kiran Vemuri; Alexandros Makriyannis; Michelle Glass

CB1 receptor signalling is canonically mediated through inhibitory Gαi proteins, but occurs through other G proteins under some circumstances, Gαs being the most characterized secondary pathway. Determinants of this signalling switch identified to date include Gαi blockade, CB1/D2 receptor co‐stimulation, CB1 agonist class and cell background. Hence, we examined the effects of receptor number and different ligands on CB1 receptor signalling.


Nature | 2012

Boström et al. reply

Pontus Boström; Jun Wu; Mark P. Jedrychowski; Anisha Korde; Li Ye; James C. Lo; Kyle A. Rasbach; Elisabeth A. Boström; Jang Hyun Choi; Jonathan Z. Long; Shingo Kajimura; Maria Cristina Zingaretti; Birgitte F. Vind; Hua Tu; Saverio Cinti; Kurt Højlund; Steven P. Gygi; Bruce M. Spiegelman

Replying to J. A. Timmons, K. Baar, P. K. Davidsen & P. J. Atherton 488, 10.1038/nature11364 (2012)


Nature | 2012

生理新規なPGC1–α依存性ミオカインは、白色脂肪の褐色脂肪様分化と熱発生を促進する

Pontus Boström; Jun Wu; Mark P. Jedrychowski; Anisha Korde; Li Ye; James C. Lo; Kyle A. Rasbach; Elisabeth A. Boström; Jang Hyun Choi; Jonathan Z. Long; Shingo Kajimura; Maria Cristina Zingaretti; Birgitte F. Vind; Hua Tu; Saverio Cinti; Kurt Højlund; Steven P. Gygi; Bruce M. Spiegelman

Exercise benefits a variety of organ systems in mammals, and some of the best-recognized effects of exercise on muscle are mediated by the transcriptional co-activator PPAR-γ co-activator-1 α (PGC1-α). Here we show in mouse that PGC1-α expression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. Irisin acts on white adipose cells in culture and in vivo to stimulate UCP1 expression and a broad program of brown-fat-like development. Irisin is induced with exercise in mice and humans, and mildly increased irisin levels in the blood cause an increase in energy expenditure in mice with no changes in movement or food intake. This results in improvements in obesity and glucose homeostasis. Irisin could be therapeutic for human metabolic disease and other disorders that are improved with exercise.


Cell | 2016

Crystal Structure of the Human Cannabinoid Receptor CB1.

Tian Hua; Kiran Vemuri; Mengchen Pu; Lu Qu; Gye Won Han; Yiran Wu; Suwen Zhao; Wenqing Shui; Shanshan Li; Anisha Korde; Robert B. Laprairie; Edward L. Stahl; Jo-Hao Ho; Nikolai Zvonok; Han Zhou; Irina Kufareva; Beili Wu; Qiang Zhao; Michael A. Hanson; Laura M. Bohn; Alexandros Makriyannis; Raymond C. Stevens; Zhi-Jie Liu


Methods in Enzymology | 2017

Ligand-Assisted Protein Structure (LAPS): An Experimental Paradigm for Characterizing Cannabinoid-Receptor Ligand-Binding Domains

David R. Janero; Anisha Korde; Alexandros Makriyannis

Collaboration


Dive into the Anisha Korde's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Ye

Stanford University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge