Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anita D. Rapp is active.

Publication


Featured researches published by Anita D. Rapp.


Journal of the Atmospheric Sciences | 2002

Comparison of Stratus Cloud Properties Deduced from Surface, GOES, and Aircraft Data during the March 2000 ARM Cloud IOP

Xiquan Dong; Patrick Minnis; Gerald G. Mace; William L. Smith; Michael R. Poellot; Roger T. Marchand; Anita D. Rapp

Low-level stratus cloud microphysical properties derived from surface and Geostationary Operational Environmental Satellite (GOES) data during the March 2000 cloud intensive observational period (IOP) at the Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP) site are compared with aircraft in situ measurements. For the surface retrievals, the cloud droplet effective radius and optical depth are retrieved from a d2-stream radiative transfer model with the input of ground-based measurements, and the cloud liquid water path (LWP) is retrieved from ground-based microwave-radiometer-measured brightness temperature. The satellite results, retrieved from GOES visible, solar-infrared, and infrared radiances, are averaged in a 0.5 8 3 0.58 box centered on the ARM SGP site. The forward scattering spectrometer probe (FSSP) on the University of North Dakota Citation aircraft provided in situ measurements of the cloud microphysical properties. During the IOP, four low-level stratus cases were intensively observed by the ground- and satellite-based remote sensors and aircraft in situ instruments resulting in a total of 10 h of simultaneous data from the three platforms. In spite of the large differences in temporal and spatial resolution between surface, GOES, and aircraft, the surface retrievals have excellent agreement with the aircraft data overall for the entire 10-h period, and the GOES results agree reasonably well with the surface and aircraft data and have similar trends and magnitudes except for the GOES-derived effective radii, which are typically larger than the surface- and aircraft-derived values. The means and standard deviations of the differences between the surface and aircraft effective radius, LWP, and optical depth are 24% 6 20.1%, 21% 6 31.2%, and 8% 6 29.3%, respectively; while their correlation coefficients are 0.78, 0.92, and 0.89, respectively, during the 10-h period. The differences and correlations between the GOES-8 and aircraft results are of a similar magnitude, except for the droplet sizes. The averaged GOES-derived effective radius is 23% or 1.8 mm greater than the corresponding aircraft values, resulting in a much smaller correlation coefficient of 0.18. Additional surface‐satellite datasets were analyzed for time periods when the aircraft was unavailable. When these additional results are combined with the retrievals from the four in situ cases, the means and standard deviations of the differences between the satellite-derived cloud droplet effective radius, LWP, and optical depth and their surface-based counterparts are 16% 6 31.2%, 4% 6 31.6%, and 26% 6 39.9%, respectively. The corresponding correlation coefficients are 0.24, 0.88, and 0.73. The frequency distributions of the two datasets are very similar indicating that the satellite retrieval method should be able to produce reliable statistics of boundary layer cloud properties for use in climate and cloud process models.


Journal of Hydrometeorology | 2015

Does Afternoon Precipitation Occur Preferentially over Dry or Wet Soils in Oklahoma

Trent W. Ford; Anita D. Rapp; Steven M. Quiring

AbstractSoil moisture is an integral part of the climate system and can drive land–atmosphere interactions through the partitioning of latent and sensible heat. Soil moisture feedback to precipitation has been documented in several regions of the world, most notably in the southern Great Plains. However, the impact of soil moisture on precipitation, particularly at short (subdaily) time scales, has not been resolved. Here, in situ soil moisture observations and satellite-based precipitation estimates are used to examine if afternoon precipitation falls preferentially over wet or dry soils in Oklahoma. Afternoon precipitation events during the warm season (May–September) in Oklahoma from 2003 and 2012 are categorized by how favorable atmospheric conditions are for convection, as well as the presence or absence of the Great Plains low-level jet. The results show afternoon precipitation falls preferentially over wet soils when the Great Plains low-level jet is absent. In contrast, precipitation falls prefere...


Journal of Climate | 2005

An Evaluation of the Proposed Mechanism of the Adaptive Infrared Iris Hypothesis Using TRMM VIRS and PR Measurements

Anita D. Rapp; Christian D. Kummerow; Wesley Berg; Brian Griffith

Significant controversy surrounds the adaptive infrared iris hypothesis put forth by Lindzen et al., whereby tropical anvil cirrus detrainment is hypothesized to decrease with increasing sea surface temperature (SST). This dependence would act as an iris, allowing more infrared radiation to escape into space and inhibiting changes in the surface temperature. This hypothesis assumes that increased precipitation efficiency in regions of higher sea surface temperatures will reduce cirrus detrainment. Tropical Rainfall Measuring Mission (TRMM ) satellite measurements are used here to investigate the adaptive infrared iris hypothesis. Pixel-level Visible and Infrared Scanner (VIRS) 10.8-m brightness temperature data and precipitation radar (PR) rain-rate data from TRMM are collocated and matched to determine individual convective cloud boundaries. Each cloudy pixel is then matched to the underlying SST. This study examines single- and multicore convective clouds separately to directly determine if a relationship exists between the size of convective clouds, their precipitation, and the underlying SSTs. In doing so, this study addresses some of the criticisms of the Lindzen et al. study by eliminating their more controversial method of relating bulk changes of cloud amount and SST across a large domain in the Tropics. The current analysis does not show any significant SST dependence of the ratio of cloud area to surface rainfall for deep convection in the tropical western and central Pacific. Results do, however, suggest that SST plays an important role in the ratio of cloud area and surface rainfall for warm rain processes. For clouds with brightness temperatures between 270 and 280 K, a net decrease in cloud area normalized by rainfall of 5% per degree SST was found.


Environmental Research Letters | 2013

Low cloud precipitation climatology in the southeastern Pacific marine stratocumulus region using CloudSat

Anita D. Rapp; Matthew Lebsock; Tristan S. L’Ecuyer

A climatology of low cloud surface precipitation occurrence and intensity from the new CloudSat 2C-RAIN-PROFILE algorithm is presented from June 2006 through December 2010 for the southeastern Pacific region of marine stratocumulus. Results show that over 70% of low cloud precipitation falls as drizzle. Application of an empirical evaporation model suggests that 50‐80% of the precipitation evaporates before it reaches the surface. Segregation of the CloudSat ascending and descending overpasses shows that the majority of precipitation occurs at night. Examination of the seasonal cycle shows that the precipitation is most frequent during the austral winter and spring; however there is considerable regional variability. Conditional rain rates increase from east to west with a maximum occurring in the region influenced by the South Pacific Convergence Zone. Area average rain rates are highest in the region where precipitation rates are moderate, but most frequent. The area average surface rain rate for low cloud precipitation for this region is 0.22 mm d 1 , in good agreement with in situ estimates, and is greatly improved over earlier CloudSat precipitation products. These results provide a much-needed quantification of surface precipitation in a region that is currently underestimated in existing satellite-based precipitation climatologies.


Journal of Applied Meteorology and Climatology | 2009

On the Consequences of Resampling Microwave Radiometer Observations for Use in Retrieval Algorithms

Anita D. Rapp; Matthew Lebsock; Christian D. Kummerow

Abstract How to deal with the different spatial resolutions of multifrequency satellite microwave radiometer measurements is a common problem in retrievals of cloud properties and rainfall. Data convolution and deconvolution is a common approach to resampling the measurements to a single resolution. Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) measurements are resampled to the resolution of the 19-GHz field of view for use in a multifrequency optimal estimation retrieval algorithm of cloud liquid water path, total precipitable water, and wind speed. Resampling the TMI measurements is found to have a strong influence on retrievals of cloud liquid water path and a slight influence on wind speed. Beam-filling effects in the resampled brightness temperatures are shown to be responsible for the large differences between the retrievals using the TMI native resolution and resampled brightness temperatures. Synthetic retrievals are performed to test the sensitivity of the retrieved parameters...


Journal of Geophysical Research | 2014

Radar observations of MJO and Kelvin wave interactions during DYNAMO/CINDY2011/AMIE

Amanda DePasquale; Courtney Schumacher; Anita D. Rapp

Radar and sounding data collected during the Dynamics of the Madden-Julian Oscillation (DYNAMO), the Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (CINDY2011), and the Atmospheric Radiation Measurement (ARM) Madden-Julian Oscillation Investigation Experiment (AMIE) field campaigns in the equatorial Indian Ocean to study the initiation of the Madden-Julian Oscillation (MJO) are used to examine the precipitation, cloud, and moisture characteristics during the MJO and convectively coupled Kelvin waves (KWs). Three MJO events and 10 KWs were identified from satellite data using different wave number frequency filters, although event identification varied based on the chosen range of latitude, frequency, and outgoing longwave radiation threshold. Radar and sounding data were composited for the three MJO events, four KWs during the active MJO, five KWs during the suppressed MJO, and one KW during the developing MJO. The MJO composite was generally consistent with past studies, although an increase in convective rain appeared to precede relative humidity increases at low- to middle-levels. The active and developing MJO KWs produced more rain and cloud than suppressed MJO KWs and had a secondary peak in stratiform rain potentially associated with subsynoptic-scale cloud clusters. The suppressed MJO KW composite displayed previously documented structure of vertical moisture buildup prior to the KW passage, whereas the developing MJO KW did not. The KW moisture signature during the active MJO was somewhat overwhelmed by the moist environment associated with the active MJO. Upper level moisture was enhanced after KW passage, regardless of MJO phase. However, upper level moisture was most enhanced after the developing MJO KW passage, providing deep tropospheric moisture that may have assisted MJO onset. Nonprecipitating upper level cloud and midlevel altocumulus/altostratus also persisted after most KW passages.


Journal of Geophysical Research | 2015

Synoptic conditions related to soil moisture‐atmosphere interactions and unorganized convection in Oklahoma

Trent W. Ford; Steven M. Quiring; Oliver W. Frauenfeld; Anita D. Rapp

Atmospheric modification by anomalously dry or wet soils can both enhance and suppress convective activity. However, the local- and meso-scale feedbacks governing soil moisture–precipitation coupling are embedded within the larger synoptic-scale environment. Despite their importance, synoptic-scale atmospheric conditions are rarely considered in studies examining soil moisture-atmosphere interactions. We combine self-organizing maps (SOMs) of 500 hPa geopotential height, spatial synoptic classification, and Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model air mass trajectories to determine if the synoptic-scale environment affects the ability of the land surface to force unorganized convection in Oklahoma. We identify several synoptic patterns that significantly impact the frequency of unorganized convection. Synoptic patterns characterized by mid-level troughs over the Southern Great Plains are less frequently associated with unorganized convective events. These patterns exhibit cool air advection in the mid- and lower-levels of the atmosphere, and are linked to suppression of convective activity. The synoptic patterns characterized by 500 hPa ridging over the study region are more frequently associated with unorganized convective events. These patterns likely result in increased net radiation, vapor pressure deficit, and more homogenously dry soils. Unorganized convective events that occur during these synoptic conditions initiate preferentially over dry soils. We present evidence that the synoptic-scale environment can influence whether and how the land surface has an impact on convection.


Journal of Applied Meteorology and Climatology | 2009

A Combined Multisensor Optimal Estimation Retrieval Algorithm for Oceanic Warm Rain Clouds

Anita D. Rapp; Gregory S. Elsaesser; Christian D. Kummerow

The complicated interactions between cloud processes in the tropical hydrologic cycle and their responses to changes in environmental variables have been the focus of many recent investigations. Most studies that examine the response of the hydrologic cycle to temperature changes focus on deep convection and cirrus production, but recent results suggest that warm rain clouds may be more sensitive to temperature changes. These clouds are prevalent in the tropics and make considerable contributions to the radiation budget and to total tropical rainfall, as well as serving to moisten and precondition the atmosphere for deep convection. A change in the properties of these clouds in climate-change scenarios could have significant implications for the hydrologic cycle. Existing microwave and visible retrievals of warm rain cloud liquid water path (LWP) disagree over the range of sea surface temperatures (SST) observed in the tropical western Pacific Ocean. Although both retrieval methods show similar behavior for nonraining clouds, the two methods show very different warm-rain-cloud LWP responses to SST, both in magnitude and trend. This makes changes to the relationship between precipitation and cloud properties in changing temperature regimes difficult to interpret. A combined optimal estimation retrieval algorithm that takes advantage of the strengths of the different satellite measurements available on the Tropical Rainfall Measuring Mission (TRMM) satellite has been developed. Deconvolved TRMM Microwave Imager brightness temperatures are combined with cloud fraction from the Visible and Infrared Scanner and rainwater estimates from the TRMM precipitation radar to retrieve the cloud LWP in warm rain systems. This algorithm is novel in that it takes into account the water in the rain and estimates the LWP due to only the cloud water in a raining cloud, thus allowing investigation of the effects of precipitation on cloud properties.


Journal of Hydrometeorology | 2014

Climatology of Storm Characteristics in Costa Rica using the TRMM Precipitation Radar

Anita D. Rapp; Alexander G. Peterson; Oliver W. Frauenfeld; Steven M. Quiring; E. Brendan Roark

AbstractTropical Rainfall Measuring Mission Precipitation Radar precipitation features are analyzed to understand the role of storm characteristics on the seasonal and diurnal cycles of precipitation in four distinct regions in Costa Rica. The distribution of annual rainfall is highly dependent on the stratiform precipitation, driven largely by seasonal increases in stratiform area. The monthly distribution of stratiform rain is bimodal in most regions, but the timing varies regionally and is related to several important large-scale features: the Caribbean low-level jet, the ITCZ, and the Chorro del Occidente Colombiano (CHOCO) jet. The relative importance of convective precipitation increases on the Caribbean side during wintertime cold air surges. Except for the coastal Caribbean domain, most regions show a strong diurnal cycle with an afternoon peak in convection followed by an evening increase in stratiform rain. Along the Caribbean coast, the diurnal cycle is weaker, with evidence of convection assoc...


Current Climate Change Reports | 2018

Response of the Intertropical Convergence Zone to Climate Change: Location, Width, and Strength

Michael P. Byrne; Angeline G. Pendergrass; Anita D. Rapp; Kyle Robert Wodzicki

Purpose of ReviewThe intertropical convergence zone (ITCZ) is a planetary-scale band of heavy precipitation close to the equator. Here, we consider the response of the ITCZ structure to climate change using observations, simulations, and theory. We focus on the substantial yet underappreciated projected changes in ITCZ width and strength, and highlight an emerging conceptual framework for understanding these changes.Recent FindingsSatellite observations and reanalysis data show a narrowing and strengthening of precipitation in the ITCZ over recent decades in both the Atlantic and Pacific basins, but little change in ITCZ location. Consistent with observations, coupled climate models predict no robust change in the zonal-mean ITCZ location over the twenty-first century. However, the majority of models project a narrowing of the ITCZ and weakening mean ascent. Interestingly, changes in ITCZ width and strength are strongly anti-correlated across models.SummaryThe ITCZ has narrowed over recent decades yet its location has remained approximately constant. Climate models project further narrowing and a weakening of the average ascent within the ITCZ as the climate continues to warm. Following intense work over the last ten years, the physical mechanisms controlling the ITCZ location are now well understood. The development of complementary theories for ITCZ width and strength is a current research priority. Outstanding challenges include understanding the ITCZ response to past climate changes and over land versus ocean regions, and better constraining all aspects of the ITCZ structure in model projections.

Collaboration


Dive into the Anita D. Rapp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

William L. Smith

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louis Nguyen

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan A. Baum

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Michael D. King

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge