Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anita Evenset is active.

Publication


Featured researches published by Anita Evenset.


Science of The Total Environment | 2003

Polycyclic aromatic hydrocarbons (PAHs) in bottom sediments of the Kara Sea shelf, Gulf of Ob and Yenisei Bay

Salve Dahle; Vladimir M Savinov; Gennadij G. Matishov; Anita Evenset; Kristoffer Næs

PAH concentration and distribution has been examined in surface sediments samples from the Kara Sea, Russia. The study includes 13 samples from the South-eastern Kara Sea shelf, one sample from the south-western part of the sea, 4 samples from the Baydaratskaya Bay, 5 samples from the Gulf of Ob and 4 samples from the Yenisei Bay, collected in August-September 1993-1994. Cluster analysis and principal component analysis (PCA) were used to identify common patterns and possible sources of PAHs. The total PAH concentration (sum of two- to six-ring aromatic hydrocarbons) in the Kara Sea sediments was generally lower than in the Barents Sea sediments and comparable to the levels in the Pechora and White seas. Two- and three-ring aromatic hydrocarbons predominated in Kara Sea sediments, which indicate a relatively stronger petrogenic origin than that in the adjacent seas. The highest total PAH concentrations within the Kara Sea were found in sediments from the Yenisei Bay and in the South-western part of the Kara Sea in the Eastern Novaya Zemlya Trough. The PAHs of the Yenisei Bay sediments were dominated by perylene and PAHs of petrogenic origin, but had also a strong indication of PAHs of pyrogenic origin. The dominating PAH group in the South-western part of the Kara Sea were four- to six-ring aromatic hydrocarbons, indicating pyrogenic origin. Perylene levels were high in all the Kara Sea samples, and highest levels were found in areas of strong terrigenous influence. The most probable source is decaying peat products being transported to the Kara Sea by both large and small rivers.


Environmental Science & Technology | 2010

Volatile siloxanes in the European arctic: assessment of sources and spatial distribution.

Nicholas A Warner; Anita Evenset; Guttorm Christensen; Geir Wing Gabrielsen; Katrine Borgå; Henriette Leknes

The purpose of this study was to investigate presence and potential accumulation of cyclic volatile methyl siloxanes (cVMS) in the Arctic environment. Octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) were analyzed in sediment, zooplankton, Atlantic cod (Gadus morhua), shorthorn sculpin (Myxocephalus scorpius), and bearded seal (Erignathus barbatus) collected from the Svalbard archipelago within the European Arctic in July 2009. Highest levels were found for D5 in fish collected from Adventfjorden, with average concentrations of 176 and 531 ng/g lipid in Atlantic cod and shorthorn sculpin, respectively. Decreasing concentration of D5 in sediment collected away from waste water outlet in Adventfjorden indicates that the local settlement of Longyearbyen is a point source to the local aquatic environment. Median biota sediment accumulation factors (BSAFs) calculated for D5 in Adventfjorden were 2.1 and 1.5 for Atlantic cod and shorthorn sculpin, respectively. Biota concentrations of D5 were lower or below detection limits in remote and sparsely populated regions (Kongsfjorden and Liefdefjorden) compared to Adventfjorden. The levels of cVMS were found to be low or below detection limits in bearded seal blubber and indicate a low risk for cVMS accumulation within mammals. Accumulation of cVMS in fish appears to be influenced by local exposure from human settlements within the Arctic.


Aquatic Toxicology | 2013

Seasonal variation in biomarkers in blue mussel (Mytilus edulis), Icelandic scallop (Chlamys islandica) and Atlantic cod (Gadus morhua)—Implications for environmental monitoring in the Barents Sea

Jasmine Nahrgang; Steven J. Brooks; Anita Evenset; Lionel Camus; Martina Jönsson; T. J. Smith; J. Lukina; Marianne Frantzen; Erica Giarratano; Paul E. Renaud

In the Barents Sea, the limited data on biological relevant indicators and their responses to various anthropogenic stressors have hindered the development of a consistent scientific basis for selecting indicator species and developing practical procedures for environmental monitoring. Accordingly, the main aim of the present study was to develop a common set of baseline values for contaminants and biomarkers in three species, and to identify their strengths and limitations in monitoring of the Barents Sea. Blue mussel (Mytilus edulis), Icelandic scallop (Chlamys islandica) and Atlantic cod (Gadus morhua) were sampled from a north Norwegian fjord in March, June, September and December 2010. Digestive glands from the bivalve species and liver from Atlantic cod were analysed for biomarkers of oxidative stress (catalase [CAT], glutathione peroxidase [GPX], glutathione-S-transferase activities [GST], lipid peroxidation as thiobarbituric reactive substances [TBARS] and total oxyradical scavenging capacity [TOSC]), biotransformation (ethoxyresorufine-O-deethylase activity [EROD]) and general stress (lysosomal membrane stability [LMS]). Concentrations of polycyclic aromatic hydrocarbons (PAHs) and metals in the bivalves and PAH metabolites in fish bile were quantified. Finally, energy reserves (total lipids, proteins and carbohydrates) and electron transport system (ETS) activity in the digestive gland of the bivalves and liver of Atlantic cod provided background information for reproductive cycle and general physiological status of the organisms. Blue mussel and Icelandic scallop showed very similar trends in biological cycle, biomarker expression and seasonality. Biomarker baselines in Atlantic cod showed weaker seasonal variability. However, important biological events may have been undetected due to the large time intervals between sampling occasions. Physiological biomarkers such as energy reserves and ETS activity were recommended as complementary parameters to the commonly used stress biomarkers, as they provided valuable information on the physiological status of the studied organisms. Interpretation of the seasonality in oxidative stress biomarkers was in general difficult but TOSC and lipid peroxidation were preferred over the antioxidant enzyme activities. This study is the first reporting seasonal baseline in these three species in a sub-Arctic location. Overall, the Icelandic scallop was considered the most adequate organism for environmental monitoring in the Barents Sea due to the interpretability of the biomarker data as well as its abundance, ease to handle and wide distribution from the southern Barents Sea to Svalbard.


Environmental Toxicology and Chemistry | 2011

Seasonality in contaminant accumulation in Arctic marine pelagic food webs using trophic magnification factor as a measure of bioaccumulation

Ingeborg G Hallanger; Nicholas A Warner; Anders Ruus; Anita Evenset; Guttorm Christensen; Dorte Herzke; Geir Wing Gabrielsen; Katrine Borgå

Seasonality in biomagnification of persistent organic pollutants (POPs; polychlorinated biphenyls, chlorinated pesticides, and brominated flame retardants) in Arctic marine pelagic food webs was investigated in Kongsfjorden, Svalbard, Norway. Trophic magnification factors (TMFs; average factor change in concentration between two trophic levels) were used to measure food web biomagnification in biota in May, July, and October 2007. Pelagic zooplankton (seven species), fish (five species), and seabirds (two species) were included in the study. For most POP compounds, highest TMFs were found in July and lowest were in May. Seasonally changing TMFs were a result of seasonally changing POP concentrations and the δ¹⁵N-derived trophic positions of the species included in the food web. These seasonal differences in TMFs were independent of inclusion/exclusion of organisms based on physiology (i.e., warm- versus cold-blooded organisms) in the food web. The higher TMFs in July, when the food web consisted of a higher degree of boreal species, suggest that future warming of the Arctic and increased invasion by boreal species can result in increased food web magnification. Knowledge of the seasonal variation in POP biomagnification is a prerequisite for understanding changes in POP biomagnification caused by climate change.


Marine Pollution Bulletin | 2015

Submarine and deep-sea mine tailing placements: a review of current practices, environmental issues, natural analogs and knowledge gaps in Norway and internationally

Eva Ramírez-Llodra; Hilde Cecilie Trannum; Anita Evenset; Lisa A. Levin; Malin Andersson; Tor Erik Finne; Ana Hilário; Belinda Flem; Guttorm Christensen; Morten Schaanning; Ann Vanreusel

The mining sector is growing in parallel with societal demands for minerals. One of the most important environmental issues and economic burdens of industrial mining on land is the safe storage of the vast amounts of waste produced. Traditionally, tailings have been stored in land dams, but the lack of land availability, potential risk of dam failure and topography in coastal areas in certain countries results in increasing disposal of tailings into marine systems. This review describes the different submarine tailing disposal methods used in the world in general and in Norway in particular, their impact on the environment (e.g. hyper-sedimentation, toxicity, processes related to changes in grain shape and size, turbidity), current legislation and need for future research. Understanding these impacts on the habitat and biota is essential to assess potential ecosystem changes and to develop best available techniques and robust management plans.


Marine Biology Research | 2011

Benthic food-web structure of an Arctic fjord (Kongsfjorden, Svalbard)

Paul E. Renaud; Michael Tessmann; Anita Evenset; Guttorm Christensen

Abstract Describing trophic relationships is fundamental for understanding ecosystem function and evaluating how these functions may vary under natural and human-induced changes in system drivers. The food-web structure (food-chain length, primary carbon sources, trophic positions of dominant functional groups) of an Arctic benthic community was investigated using stable isotopes of carbon and nitrogen. Suspended organic matter, benthic fauna, and benthic-feeding fishes and seabirds were collected from two locations during three seasons in and just outside of Kongsfjorden, Svalbard. Stable isotope ratios suggested relatively little variability in food-web structure over the temporal and spatial scales studied. A single food source (pelagic phytoplankton) appeared to predominate throughout the year regardless of location. Further, our results confirmed findings from other areas indicating that Arctic food chains are long, consisting of between 4 and 5 trophic levels. The prevalence of deposit-feeding taxa may buffer seasonal signals, and the highly advective nature of Kongsfjorden, and perhaps many open (non-silled) fjords, is likely responsible for similar food-web structure, despite spatial variability in benthic community composition.


Science of The Total Environment | 2011

Differences between Arctic and Atlantic fjord systems on bioaccumulation of persistent organic pollutants in zooplankton from Svalbard

Ingeborg G Hallanger; Anders Ruus; Nicholas A Warner; Dorte Herzke; Anita Evenset; Merete Schøyen; Geir Wing Gabrielsen; Katrine Borgå

Differences in bioaccumulation of persistent organic pollutants (POPs) between fjords characterized by different water masses were investigated by comparing POP concentrations, patterns and bioaccumulation factors (BAFs) in seven species of zooplankton from Liefdefjorden (Arctic water mass) and Kongsfjorden (Atlantic water mass), Svalbard, Norway. No difference in concentrations and patterns of POPs was observed in seawater and POM; however higher concentrations and BAFs for certain POPs were found in species of zooplankton from Kongsfjorden. The same species were sampled in both fjords and the differences in concentrations of POPs and BAFs were most likely due to fjord specific characteristics, such as ice cover and timing of snow/glacier melt. These confounding factors make it difficult to conclude on water mass (Arctic vs. Atlantic) specific differences and further to extrapolate these results to possible climate change effects on accumulation of POPs in zooplankton. The present study suggests that zooplankton do biomagnify POPs, which is important for understanding contaminant uptake and flux in zooplankton, though consciousness regarding the method of evaluation is important.


Environmental Toxicology and Chemistry | 2011

Influence of season, location, and feeding strategy on bioaccumulation of halogenated organic contaminants in Arctic marine zooplankton

Ingeborg G Hallanger; Anders Ruus; Dorte Herzke; Nicholas A Warner; Anita Evenset; Eldbjørg Sofie Heimstad; Geir Wing Gabrielsen; Katrine Borgå

The influence of season, location, feeding strategy, and trophic position on concentration, compositional pattern, and bioaccumulation factors (BAFs) of halogenated organic contaminants (HOCs; polychlorinated biphenyls, chlorinated pesticides, and brominated flame retardants) was investigated within an Arctic zooplankton food web. Water (dissolved fraction) and seven Arctic marine pelagic zooplankton species (including herbivores, omnivores, and predators) were sampled in May, July, and October 2007 at two stations in Kongsfjorden, Svalbard, Norway. The HOC concentrations in both water and zooplankton generally decreased from May to October. The HOC concentrations and patterns among zooplankton species were explained by their feeding strategies, roughly categorized as herbivores, omnivores, and predators, and not stable isotope-derived trophic position. Field-derived BAFs varied greatly, with higher BAFs in May compared with July and October. Furthermore, BAFs differed among the species according to their feeding strategies. The relationship between BAFs from the different seasons and K(OW) (octanol:water partitioning coefficient) showed comparable intercepts and different slopes between May and October, with all relationships diverging from the assumed 1:1 relationship between BAF and K(OW). Differences in HOC concentrations and BAFs from herbivores to predators showed that biomagnification occurred in zooplankton. The results suggest that concentrations and patterns of HOCs in zooplankton species are influenced not only by equilibrium partitioning with water but also by feeding strategy.


Marine Pollution Bulletin | 2015

Organophosphorous flame retardants in biota from Svalbard, Norway

Ingeborg G Hallanger; Kjetil Sagerup; Anita Evenset; Kit M. Kovacs; P.E.G. Leonards; Eva Fuglei; Heli Routti; Jon Aars; Hallvard Strøm; Christian Lydersen; Geir Wing Gabrielsen

Eight arctic species, including fish, birds and mammals, from diverse habitats (marine and terrestrial) within the Svalbard Archipelago, Norway, were screened for 14 organophosphorus flame retardant (PFR) compounds. Ten PFRs were detected: tris(2-chloroethyl)phosphate (TCEP), tris(2-chloroisopropyl)phosphate (TCIPP), tris(1,3-dichloro-2-propyl)phosphate (TDCIPP), triphenyl phosphate (TPHP); 2-ethylhexyl diphenyl phosphate (EHDPP); tris(2-butoxyethyl)phosphate (TBOEP); tritolyl phosphate (TCrP); triisobutyl phosphate (TIBP); tris(2-ethylhexyl)phosphate (TEHP); and butyl diphenyl phosphate (DPhBP). The greatest number of different PFR compounds, and the highest detection frequency were measured in capelin (Mallotus villotus), and the lowest in Brünnichs guillemot (Uria lomvia). The highest concentrations of ΣPFR, as well as the highest concentration of a single PFR compound, TBOEP, were measured in arctic fox (Vulpes lagopus). The presence of PFR compounds in arctic biota indicates that these compounds can undergo long-range transport and are, to some degree, persistent and bioaccumulated. The potential for biomagnification from fish to higher trophic levels seems to be limited.


Environmental Toxicology and Chemistry | 2015

Methylmercury biomagnification in an Arctic pelagic food web

Anders Ruus; Ida Beathe Øverjordet; Hans Fredrik Veiteberg Braaten; Anita Evenset; Guttorm Christensen; Eldbjørg Sofie Heimstad; Geir Wing Gabrielsen; Katrine Borgå

Mercury (Hg) is a toxic element that enters the biosphere from natural and anthropogenic sources, and emitted gaseous Hg enters the Arctic from lower latitudes by long-range transport. In aquatic systems, anoxic conditions favor the bacterial transformation of inorganic Hg to methylmercury (MeHg), which has a greater potential for bioaccumulation than inorganic Hg and is the most toxic form of Hg. The main objective of the present study was to quantify the biomagnification of MeHg in a marine pelagic food web, comprising species of zooplankton, fish, and seabirds, from the Kongsfjorden system (Svalbard, Norway), by use of trophic magnification factors. As expected, tissue concentrations of MeHg increased with increasing trophic level in the food web, though at greater rates than observed in several earlier studies, especially at lower latitudes. There was strong correlation between MeHg and total Hg concentrations through the food web as a whole. The concentration of MeHg in kittiwake decreased from May to October, contributing to seasonal differences in trophic magnification factors. The ecology and physiology of the species comprising the food web in question may have a large influence on the magnitude of the biomagnification. A significant linear relationship was also observed between concentrations of selenium and total Hg in birds but not in zooplankton, suggesting the importance of selenium in Hg detoxification for individuals with high Hg concentrations.

Collaboration


Dive into the Anita Evenset's collaboration.

Top Co-Authors

Avatar

Nicholas A Warner

Norwegian Institute for Air Research

View shared research outputs
Top Co-Authors

Avatar

Anders Ruus

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dorte Herzke

Norwegian Institute for Air Research

View shared research outputs
Top Co-Authors

Avatar

Katrine Borgå

Norwegian College of Fishery Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Kallenborn

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Eldbjørg Sofie Heimstad

Norwegian Institute for Air Research

View shared research outputs
Top Co-Authors

Avatar

Henriette Leknes

Norwegian Institute for Air Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge