Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anita Farhi is active.

Publication


Featured researches published by Anita Farhi.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Genetic diagnosis by whole exome capture and massively parallel DNA sequencing

Murim Choi; Ute I. Scholl; Weizhen Ji; Tiewen Liu; Irina Tikhonova; Paul Zumbo; Ahmet Nayir; Ayșin Bakkaloğlu; Seza Ozen; Sami A. Sanjad; Carol Nelson-Williams; Anita Farhi; Shrikant Mane; Richard P. Lifton

Protein coding genes constitute only approximately 1% of the human genome but harbor 85% of the mutations with large effects on disease-related traits. Therefore, efficient strategies for selectively sequencing complete coding regions (i.e., “whole exome”) have the potential to contribute to the understanding of rare and common human diseases. Here we report a method for whole-exome sequencing coupling Roche/NimbleGen whole exome arrays to the Illumina DNA sequencing platform. We demonstrate the ability to capture approximately 95% of the targeted coding sequences with high sensitivity and specificity for detection of homozygous and heterozygous variants. We illustrate the utility of this approach by making an unanticipated genetic diagnosis of congenital chloride diarrhea in a patient referred with a suspected diagnosis of Bartter syndrome, a renal salt-wasting disease. The molecular diagnosis was based on the finding of a homozygous missense D652N mutation at a position in SLC26A3 (the known congenital chloride diarrhea locus) that is virtually completely conserved in orthologues and paralogues from invertebrates to humans, and clinical follow-up confirmed the diagnosis. To our knowledge, whole-exome (or genome) sequencing has not previously been used to make a genetic diagnosis. Five additional patients suspected to have Bartter syndrome but who did not have mutations in known genes for this disease had homozygous deleterious mutations in SLC26A3. These results demonstrate the clinical utility of whole-exome sequencing and have implications for disease gene discovery and clinical diagnosis.


Nature | 2012

Mutations in Kelch-like 3 and Cullin 3 cause hypertension and electrolyte abnormalities

Lynn M. Boyden; Murim Choi; Keith A. Choate; Carol Nelson-Williams; Anita Farhi; Hakan R. Toka; Irina Tikhonova; Robert D. Bjornson; Shrikant Mane; Giacomo Colussi; Marcel Lebel; Richard D. Gordon; Ben A. Semmekrot; Alain Poujol; Matti Välimäki; Maria Elisabetta De Ferrari; Sami A. Sanjad; Michael Gutkin; Fiona E. Karet; Joseph R. Tucci; Jim R. Stockigt; Kim M. Keppler-Noreuil; Craig C. Porter; Sudhir K. Anand; Margo Whiteford; Ira Davis; Stephanie Dewar; Alberto Bettinelli; Jeffrey J. Fadrowski; Craig W. Belsha

Hypertension affects one billion people and is a principal reversible risk factor for cardiovascular disease. Pseudohypoaldosteronism type II (PHAII), a rare Mendelian syndrome featuring hypertension, hyperkalaemia and metabolic acidosis, has revealed previously unrecognized physiology orchestrating the balance between renal salt reabsorption and K+ and H+ excretion. Here we used exome sequencing to identify mutations in kelch-like 3 (KLHL3) or cullin 3 (CUL3) in PHAII patients from 41 unrelated families. KLHL3 mutations are either recessive or dominant, whereas CUL3 mutations are dominant and predominantly de novo. CUL3 and BTB-domain-containing kelch proteins such as KLHL3 are components of cullin–RING E3 ligase complexes that ubiquitinate substrates bound to kelch propeller domains. Dominant KLHL3 mutations are clustered in short segments within the kelch propeller and BTB domains implicated in substrate and cullin binding, respectively. Diverse CUL3 mutations all result in skipping of exon 9, producing an in-frame deletion. Because dominant KLHL3 and CUL3 mutations both phenocopy recessive loss-of-function KLHL3 mutations, they may abrogate ubiquitination of KLHL3 substrates. Disease features are reversed by thiazide diuretics, which inhibit the Na–Cl cotransporter in the distal nephron of the kidney; KLHL3 and CUL3 are expressed in this location, suggesting a mechanistic link between KLHL3 and CUL3 mutations, increased Na–Cl reabsorption, and disease pathogenesis. These findings demonstrate the utility of exome sequencing in disease gene identification despite the combined complexities of locus heterogeneity, mixed models of transmission and frequent de novo mutation, and establish a fundamental role for KLHL3 and CUL3 in blood pressure, K+ and pH homeostasis.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10.

Ute I. Scholl; Murim Choi; Tiewen Liu; Vincent Ramaekers; Martin Häusler; Joanne Grimmer; Sheldon W. Tobe; Anita Farhi; Carol Nelson-Williams; Richard P. Lifton

We describe members of 4 kindreds with a previously unrecognized syndrome characterized by seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (hypokalemia, metabolic alkalosis, and hypomagnesemia). By analysis of linkage we localize the putative causative gene to a 2.5-Mb segment of chromosome 1q23.2–23.3. Direct DNA sequencing of KCNJ10, which encodes an inwardly rectifying K+ channel, identifies previously unidentified missense or nonsense mutations on both alleles in all affected subjects. These mutations alter highly conserved amino acids and are absent among control chromosomes. Many of these mutations have been shown to cause loss of function in related K+ channels. These findings demonstrate that loss-of-function mutations in KCNJ10 cause this syndrome, which we name SeSAME. KCNJ10 is expressed in glia in the brain and spinal cord, where it is believed to take up K+ released by neuronal repolarization, in cochlea, where it is involved in the generation of endolymph, and on the basolateral membrane in the distal nephron. We propose that KCNJ10 is required in the kidney for normal salt reabsorption in the distal convoluted tubule because of the need for K+ recycling across the basolateral membrane to enable normal activity of the Na+-K+-ATPase; loss of this function accounts for the observed electrolyte defects. Mice deficient for KCNJ10 show a related phenotype with seizures, ataxia, and hearing loss, further supporting KCNJ10s role in this syndrome. These findings define a unique human syndrome, and establish the essential role of basolateral K+ channels in renal electrolyte homeostasis.


American Journal of Human Genetics | 2004

Disruption of contactin 4 (CNTN4) results in developmental delay and other features of 3p deletion syndrome.

Thomas V. Fernandez; Thomas Morgan; Nicole Davis; Ami Klin; Anita Farhi; Richard P. Lifton; Matthew W. State

3p deletion syndrome is a rare contiguous-gene disorder involving the loss of the telomeric portion of the short arm of chromosome 3 and characterized by developmental delay, growth retardation, and dysmorphic features. All reported cases have involved, at a minimum, the deletion of chromosome 3 telomeric to the band 3p25.3. Despite the presence of several genes in this region that are involved in neural development, a causative relationship between a particular transcript and the observed clinical manifestations has remained elusive. We have identified a child with characteristic physical features of 3p deletion syndrome and both verbal and nonverbal developmental delay who carries a de novo balanced translocation involving chromosomes 3 and 10. Fine mapping of this rearrangement demonstrates that the translocation breakpoint on chromosome 3 falls within the recently identified minimal candidate region for 3p deletion syndrome and disrupts the Contactin 4 (CNTN4) mRNA transcript at 3p26.2–3p26.3. This transcript (also known as BIG-2) is a member of the immunoglobulin super family of neuronal cell adhesion molecules involved in axon growth, guidance, and fasciculation in the central nervous system (CNS). Our results demonstrate the association of CNTN4 disruption with the 3p deletion syndrome phenotype and strongly suggest a causal relationship. These findings point to an important role for CNTN4 in normal and abnormal CNS development.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Hypertension with or without adrenal hyperplasia due to different inherited mutations in the potassium channel KCNJ5

Ute I. Scholl; Carol Nelson-Williams; Peng Yue; Roger Grekin; Robert J. Wyatt; Michael J. Dillon; Robert Couch; Lisa K. Hammer; Frances L. Harley; Anita Farhi; Wen-Hui Wang; Richard P. Lifton

We recently implicated two recurrent somatic mutations in an adrenal potassium channel, KCNJ5, as a cause of aldosterone-producing adrenal adenomas (APAs) and one inherited KCNJ5 mutation in a Mendelian form of early severe hypertension with massive adrenal hyperplasia. The mutations identified all altered the channel selectivity filter, producing increased Na+ conductance and membrane depolarization, the signal for aldosterone production and proliferation of adrenal glomerulosa cells. We report herein members of four kindreds with early onset primary aldosteronism of unknown cause. Sequencing of KCNJ5 revealed that affected members of two kindreds had KCNJ5G151R mutations, identical to one of the prevalent recurrent mutations in APAs. These individuals had severe progressive aldosteronism and hyperplasia requiring bilateral adrenalectomy in childhood for blood pressure control. Affected members of the other two kindreds had KCNJ5G151E mutations, which are not seen in APAs. These subjects had easily controlled hypertension and no evidence of hyperplasia. Surprisingly, electrophysiology of channels expressed in 293T cells demonstrated that KCNJ5G151E was the more extreme mutation, producing a much larger Na+ conductance than KCNJ5G151R, resulting in rapid Na+-dependent cell lethality. We infer that this increased lethality limits adrenocortical cell mass and the severity of aldosteronism in vivo, accounting for the milder phenotype among these patients. These findings demonstrate striking variations in phenotypes and clinical outcome resulting from different mutations of the same amino acid in KCNJ5 and have implications for the diagnosis and pathogenesis of primary aldosteronism with and without adrenal hyperplasia.


Hypertension | 2001

Mutations in the Na-Cl Cotransporter Reduce Blood Pressure in Humans

Dinna N. Cruz; David B. Simon; Carol Nelson-Williams; Anita Farhi; Karin E. Finberg; Laura Burleson; John R. Gill; Richard P. Lifton

The relationship between salt homeostasis and blood pressure has remained difficult to establish from epidemiological studies of the general population. Recently, mendelian forms of hypertension have demonstrated that mutations that increase renal salt balance lead to higher blood pressure, suggesting that mutations that decrease the net salt balance might have the converse effect. Gitelman’s syndrome, caused by loss of function mutations in the Na-Cl cotransporter of the distal convoluted tubule (NCCT), features inherited hypokalemic alkalosis with so-called “normal” blood pressure. We hypothesized that the mild salt wasting of Gitelman’s syndrome results in reduced blood pressure and protection from hypertension. We have formally addressed this question through the study of 199 members of a large Amish kindred with Gitelman’s syndrome. Through genetic testing, family members were identified as inheriting 0 (n=60), 1 (n=113), or 2 (n=26) mutations in NCCT, permitting an unbiased assessment of the clinical consequences of inheriting these mutations by comparison of the phenotypes of relatives with contrasting genotypes. The results demonstrate high penetrance of hypokalemic alkalosis, hypomagnesemia, and hypocalciuria in patients inheriting 2 mutant NCCT alleles. In addition, the NCCT genotype was a significant predictor of blood pressure, with homozygous mutant family members having significantly lower age- and gender-adjusted systolic and diastolic blood pressures than those of their wild-type relatives. Moreover, both homozygote and heterozygote subjects had significantly higher 24-hour urinary Na+ than did wild-type subjects, reflecting a self-selected higher salt intake. Finally, heterozygous children, but not adults, had significantly lower blood pressures than those of the wild-type relatives. These findings provide formal demonstration that inherited mutations that impair renal salt handling lower blood pressure in humans.


Science | 2010

Mitotic Recombination in Patients with Ichthyosis Causes Reversion of Dominant Mutations in KRT10

Keith A. Choate; Yin Lu; Jing Zhou; Murim Choi; Peter M. Elias; Anita Farhi; Carol Nelson-Williams; Debra Crumrine; Mary L. Williams; Amy J. Nopper; Alanna Bree; Leonard M. Milstone; Richard P. Lifton

Gaining from a Loss Mitotic recombination can cause a cell carrying heterozygous mutations in a tumor suppressor gene to lose the wild-type copy of the gene, setting the cell on the pathway to uncontrolled growth. But can mitotic recombination have beneficial effects in other settings—that is, lead to phenotypic correction of a diseased cell by facilitating loss of the disease-causing mutation? Choate et al. (p. 94, published online 26 August; see the Perspective by Davis and Candotti) now find evidence for this type of event in a rare skin disease called ichthyosis with confetti (IWC). Patients with IWC display severe scaling of the skin but have widespread patches of normal skin that reflect clonal expansion of revertant cells. The revertant cells showed loss of heterozygosity on chromosome 17q and, as a result of mitotic recombination, these cells selectively lost dominant disease-causing mutations in the keratin 10 gene (KRT10), but retained the wild-type copy of the gene. Patches of normal skin in patients with a rare skin disorder are due to cells that have lost the disease-causing mutation. Somatic loss of wild-type alleles can produce disease traits such as neoplasia. Conversely, somatic loss of disease-causing mutations can revert phenotypes; however, these events are infrequently observed. Here we show that ichthyosis with confetti, a severe, sporadic skin disease in humans, is associated with thousands of revertant clones of normal skin that arise from loss of heterozygosity on chromosome 17q via mitotic recombination. This allowed us to map and identify disease-causing mutations in the gene encoding keratin 10 (KRT10); all result in frameshifts into the same alternative reading frame, producing an arginine-rich C-terminal peptide that redirects keratin 10 from the cytokeratin filament network to the nucleolus. The high frequency of somatic reversion in ichthyosis with confetti suggests that revertant stem cell clones are under strong positive selection and/or that the rate of mitotic recombination is elevated in individuals with this disorder.


Journal of Clinical Investigation | 2015

Frequent somatic reversion of KRT1 mutations in ichthyosis with confetti

Keith A. Choate; Yin Lu; Jing Zhou; Peter M. Elias; Samir Zaidi; Amy S. Paller; Anita Farhi; Carol Nelson-Williams; Debra Crumrine; Leonard M. Milstone; Richard P. Lifton

Widespread reversion of genetic disease is rare; however, such events are particularly evident in some skin disorders in which normal clones develop on a background of affected skin. We previously demonstrated that mutations in keratin 10 (KRT10) cause ichthyosis with confetti (IWC), a severe dominant disorder that is characterized by progressive development of hundreds of normal skin spots via revertant mosaicism. Here, we report on a clinical and histological IWC subtype in which affected subjects have red, scaly skin at birth, experience worsening palmoplantar keratoderma in childhood, and develop hundreds of normal skin spots, beginning at around 20 years of age, that increase in size and number over time. We identified a causal de novo mutation in keratin 1 (KRT1). Similar to IWC-causing KRT10 mutations, this mutation in KRT1 resulted in a C-terminal frameshift, replacing 22 C-terminal amino acids with an alternate 30-residue peptide. Mutant KRT1 caused partial collapse of the cytoplasmic intermediate filament network and mislocalized to the nucleus. As with KRT10 mutations causing IWC, reversion of KRT1 mutations occurred via mitotic recombination. Because reversion is not observed with other disease-causing keratin mutations, the results of this study implicate KRT1 and KRT10 C-terminal frameshift mutations in the high frequency of revertant mosaicism in IWC.


Pediatric Nephrology | 2012

SeSAME/EAST syndrome—phenotypic variability and delayed activity of the distal convoluted tubule

Ute I. Scholl; Haatal B. Dave; Ming Lu; Anita Farhi; Carol Nelson-Williams; James A. Listman; Richard P. Lifton

BackgroundMutations in the K+ channel KCNJ10 (Kir4.1) cause an autosomal recessive syndrome featuring seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME). Kir4.1 localizes to the basolateral membrane of the renal distal convoluted tubule, and its loss of function mimics renal features of Gitelman syndrome, with hypokalemic alkalosis, hypomagnesemia, and hypocalciuria. Presentation early in life due to seizures provides an opportunity to investigate the development of the electrolyte defect with age.MethodsWe used DNA sequencing, electrophysiology, confocal imaging, and biochemistry to identify a new KCNJ10 mutation in a previously unreported family and determine its impact on channel function. We examined medical records to follow the development of electrolyte disorders with age.ResultsThe four affected members were all homozygous for a novel T57I mutation that confers biochemical loss-of-function. Electrolytes in affected children were normal in the first years of life but showed significant worsening with age, resulting in clinically significant defects at age 5–8 years. Similar findings were seen in other SeSAME patients.ConclusionsThese findings provide evidence for a delayed activity of salt reabsorption by the distal convoluted tubule and suggest an explanation for the delayed clinical presentation of subjects with Gitelman syndrome.


Biological Psychiatry | 1995

Psychiatric status after human fetal mesencephalic tissue transplantation in Parkinson's disease

Lawrence H. Price; Dennis D. Spencer; Kenneth Marek; Richard J. Robbins; Csaba Leranth; Anita Farhi; Frederick Naftolin; Robert H. Roth; Benjamin S. Bunney; Paul B. Hoffer; Robert W. Makuch; D. Eugene Redmond

This report describes the prospective and systematic psychiatric assessment of nine patients who received transplantation of human fetal mesencephalic tissue into the caudate nucleus for treatment of Parkinsons disease. Unlike adrenal medullary transplantation, which often causes psychosis or delirium, this procedure appeared to have few perioperative sequelae. On longer-term follow-up, there was some statistical evidence of deterioration in psychiatric status, as manifested primarily in depressive and nonspecific emotional and behavioral symptoms. This group effect was partly attributable to the occurrence of discrete episodes of illness (major depression and panic disorder with agoraphobia) in some patients, but it was unclear whether such episodes occurred more often than would ordinarily be expected in Parkinsons disease. Differences in the neurobiological effects of fetal mesencephalic and adrenal medullary grafts may account for differences in the psychiatric sequelae of patients receiving these procedures.

Collaboration


Dive into the Anita Farhi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Murim Choi

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debra Crumrine

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge