Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anita Ignatius is active.

Publication


Featured researches published by Anita Ignatius.


Nature Reviews Rheumatology | 2012

Fracture healing under healthy and inflammatory conditions

Lutz Claes; Stefan Recknagel; Anita Ignatius

Optimal fracture treatment requires knowledge of the complex physiological process of bone healing. The course of bone healing is mainly influenced by fracture fixation stability (biomechanics) and the blood supply to the healing site (revascularization after trauma). The repair process proceeds via a characteristic sequence of events, described as the inflammatory, repair and remodeling phases. An inflammatory reaction involving immune cells and molecular factors is activated immediately in response to tissue damage and is thought to initiate the repair cascade. Immune cells also have a major role in the repair phase, exhibiting important crosstalk with bone cells. After bony bridging of the fragments, a slow remodeling process eventually leads to the reconstitution of the original bone structure. Systemic inflammation, as observed in patients with rheumatoid arthritis, diabetes mellitus, multiple trauma or sepsis, can increase fracture healing time and the rate of complications, including non-unions. In addition, evidence suggests that insufficient biomechanical conditions within the fracture zone can influence early local inflammation and impair bone healing. In this Review, we discuss the main factors that influence fracture healing, with particular emphasis on the role of inflammation.


Cytotherapy | 2012

Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components

Natalie Fekete; Mélanie Gadelorge; Daniel Fürst; Caroline Maurer; Julia Dausend; Sandrine Fleury-Cappellesso; Volker Mailänder; Ramin Lotfi; Anita Ignatius; Luc Sensebé; Philippe Bourin; Hubert Schrezenmeier; Markus Rojewski

Background aims The clinical use of human mesenchymal stromal cells (MSC) requires ex vivo expansion in media containing supplements such as fetal bovine serum or, alternatively, human platelet lysate (PL). Methods Platelet concentrates were frozen, quarantine stored, thawed and sterile filtered to obtain PL. PL content and its effect on fibroblast-colony-forming unit (CFU-F) formation, MSC proliferation and large-scale expansion were studied. Results PL contained high levels of basic fibroblast growth factor (bFGF), soluble CD40L (sCD40L), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), platelet-derived growth factor AA (PDGF-AA), platelet-derived growth factor AB/BB (PDGF-AB/BB), chemokine (C-C) ligand 5 (CCL5; RANTES) transforming growth factor-β1 (TGF-β1) and chemokine (C-X-C) ligand 1/2/3 (GRO), with low batch-to-batch variability, and most were stable for up to 14 days. Inhibition of PDGF-BB and bFGF decreased MSC proliferation by about 20% and 50%, respectively. The strongest inhibition (about 75%) was observed with a combination of anti-bFGF + anti-PDGF-BB and anti-bFGF + anti-TGF-β1 + anti-PDGF-BB. Interestingly, various combinations of recombinant PDGF-BB, bFGF and TGF-β1 were not sufficient to promote cell proliferation. PL from whole blood-derived pooled platelet concentrates and apheresis platelet concentrates did not differ significantly in their growth-promoting activity on MSC. Conclusions PL enhances MSC proliferation and can be regarded as a safe tool for MSC expansion for clinical purposes. \in particular, PDGF-BB and bFGF are essential components for the growth-promoting effect of PL, but are not sufficient for MSC proliferation.


Journal of Biomechanics | 2000

Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity

Daniela Kaspar; Walter Seidl; Cornelia Neidlinger-Wilke; Anita Ignatius; Lutz Claes

The cell activity of human-bone-derived cell cultures was studied after mechanical stimulation by cyclic strain at a magnitude occurring in physiologically loaded bone tissue. Monolayers of subconfluently grown human-bone-derived cells were stretched in rectangular silicone dishes with cyclic predominantly uniaxial movement along their longitudinal axes. Strain was applied over two days for 30 min per day with a frequency of 1 Hz and a strain magnitude of 1000 microstrain. Cyclic stretching of the cells resulted in an increased proliferation (10-48%) and carboxyterminal collagen type I propeptide release (7-49%) of human-cancellous bone-derived osteoblasts while alkaline phosphatase activity and osteocalcin release were significantly reduced by 9-25 and 5-32%, respectively. These results demonstrate that cyclic strain at physiologic magnitude leads to an increase of osteoblast activities related to matrix production while those activities which are characteristic for the differentiated osteoblast and relevant for matrix mineralization are decreased.


Journal of Biomechanics | 2002

Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain

Daniela Kaspar; Walter Seidl; Cornelia Neidlinger-Wilke; Alexander Beck; Lutz Claes; Anita Ignatius

We tested the hypothesis whether the number of applied load cycles and the frequency of uniaxial strain have an effect on proliferation of human bone derived osteoblast-like cells. A new approach was developed in order to differentiate between the effects of frequency and the effects of cycle number and strain duration. Monolayers of subconfluently grown cells were stretched in rectangular silicone dishes with cyclic predominantly uniaxial movement along there longitudinal axes. Strain was applied over 2 days varying the number of applied load cycles (4-3600) at a constant frequency (1Hz) or varying the frequency (0.1-30Hz) at a constant number of applied cycles (1800) or at a constant strain duration (5min). At a constant frequency, proliferative response increases (103%) with the number of applied cycles until a cycle number maximum (1800 cycles) was reached. 3600 cycles reduced cell number (43%) in contrast to the maximum. The variation of the frequency of applied strain tended to result in slight differences with regard to cell proliferation when cycle number was left constant. However, combined with an appropriate number of cycles there was an optimal frequency (1Hz) as stimulus for bone cell proliferation (84%). A higher frequency (30Hz) in combination with a high cycle number (9000) reduced cell number to control level (4%). This study demonstrates a frequency and cycle number dependent proliferative response of human osteoblast-like cells. It could be shown that effects of the frequency should not be considered separately from the effects of the cycle number.


Molecular Medicine | 2011

New insights of an old defense system: structure, function, and clinical relevance of the complement system.

Ehrnthaller C; Anita Ignatius; Gebhard F; Markus Huber-Lang

The complement system was discovered a century ago as a potent defense cascade of innate immunity. After its first description, continuous experimental and clinical research was performed, and three canonical pathways of activation were established. Upon activation by traumatic or surgical tissue damage, complement reveals beneficial functions of pathogen and danger defense by sensing and clearing injured cells. However, the latest research efforts have provided a more distinct insight into the complement system and its clinical subsequences. Complement has been shown to play a significant role in the pathogenesis of various inflammatory processes such as sepsis, multiorgan dysfunction, ischemia/reperfusion, cardiovascular diseases and many others. The three well-known activation pathways of the complement system have been challenged by newer findings that demonstrate direct production of central complement effectors (for example, C5a) by serine proteases of the coagulation cascade. In particular, thrombin is capable of producing C5a, which not only plays a decisive role on pathogens and infected/damaged tissues, but also acts systemically. In the case of uncontrolled complement activation, “friendly fire” is generated, resulting in the destruction of healthy host tissue. Therefore, the traditional research that focuses on a mainly positive-acting cascade has now shifted to the negative effects and how tissue damage originated by the activation of the complement can be contained. In a translational approach including structure-function relations of this ancient defense system, this review provides new insights of complement-mediated clinical relevant diseases and the development of complement modulation strategies and current research aspects.


Biomaterials | 1996

New bioresorbable pin for the reduction of small bony fragments : design, mechanical properties and in vitro degradation

Lutz Claes; Anita Ignatius; Ke Rehm; C Scholz

The design, material properties, and in vivo degradation characteristics of a new resorbable pin for the reductions of small bony fragments are described. The Polypin, made of 70:30 poly (L, DL-lactide), had an initial bending strength of 155-163 MPa, as measured by a three-point bending test. Ethylene oxide (EO)- and gamma-sterilization did not substantially affect its initial mechanical properties. The initial molecular weight (Mw) of 523,000 to 600,000, however, decreased 60-75% after gamma-sterilization. Incubation of the EO-sterilized pins in 37 degrees C saline solution produced a complete loss of bending strength at 18 months. An accelerated test at 70 degrees C led to a complete loss of strength after only 96 h. Degradation of the gamma-sterilized pin at 70 degrees C was about 30% faster than that of the EO-sterilized pin. Bending strength and molecular weight were unaffected by storage at room temperature for 46 months. The relatively slow strength loss rate of the Polypin potentially extends the application of resorbable devices to slow-healing fractures. The new pin design allows application of light interfragmentary compression, thus reducing the risk of pin loosening, and an X-ray marker is provided.


Journal of Cellular Biochemistry | 2011

Complement C3a and C5a modulate osteoclast formation and inflammatory response of osteoblasts in synergism with IL-1β

Anita Ignatius; Philipp Schoengraf; Ludwika Kreja; Astrid Liedert; Stefan Recknagel; Sebastian Kandert; Rolf E. Brenner; Marion Schneider; John D. Lambris; Markus Huber-Lang

There is a tight interaction of the bone and the immune system. However, little is known about the relevance of the complement system, an important part of innate immunity and a crucial trigger for inflammation. The aim of this study was, therefore, to investigate the presence and function of complement in bone cells including osteoblasts, mesenchymal stem cells (MSC), and osteoclasts. qRT‐PCR and immunostaining revealed that the central complement receptors C3aR and C5aR, complement C3 and C5, and membrane‐bound regulatory proteins CD46, CD55, and CD59 were expressed in human MSC, osteoblasts, and osteoclasts. Furthermore, osteoblasts and particularly osteoclasts were able to activate complement by cleaving C5 to its active form C5a as measured by ELISA. Both C3a and C5a alone were unable to trigger the release of inflammatory cytokines interleukin (IL)‐6 and IL‐8 from osteoblasts. However, co‐stimulation with the pro‐inflammatory cytokine IL‐1β significantly induced IL‐6 and IL‐8 expression as well as the expression of receptor activator of nuclear factor‐kappaB ligand (RANKL) and osteoprotegerin (OPG) indicating that complement may modulate the inflammatory response of osteoblastic cells in a pro‐inflammatory environment as well as osteoblast–osteoclast interaction. While C3a and C5a did not affect osteogenic differentiation, osteoclastogenesis was significantly induced even in the absence of RANKL and macrophage‐colony stimulating factor (M‐CSF) suggesting that complement could directly regulate osteoclast formation. It can therefore be proposed that complement may enhance the inflammatory response of osteoblasts and increase osteoclast formation, particularly in a pro‐inflammatory environment, for example, during bone healing or in inflammatory bone disorders. J. Cell. Biochem. 112: 2594–2605, 2011.


Bone | 2011

Small animal bone healing models: Standards, tips, and pitfalls results of a consensus meeting

Tina Histing; Patric Garcia; Joerg H. Holstein; M. Klein; R. Matthys; R. Nuetzi; Roland Steck; M.W. Laschke; Ronny Bindl; Stefan Recknagel; Ewa Klara Stuermer; Brigitte Vollmar; Britt Wildemann; Jasmin Lienau; Bettina M. Willie; Anja Peters; Anita Ignatius; Tim Pohlemann; Lutz Claes; Michael D. Menger

Small animal fracture models have gained increasing interest in fracture healing studies. To achieve standardized and defined study conditions, various variables must be carefully controlled when designing fracture healing experiments in mice or rats. The strain, age and sex of the animals may influence the process of fracture healing. Furthermore, the choice of the fracture fixation technique depends on the questions addressed, whereby intra- and extramedullary implants as well as open and closed surgical approaches may be considered. During the last few years, a variety of different, highly sophisticated implants for fracture fixation in small animals have been developed. Rigid fixation with locking plates or external fixators results in predominantly intramembranous healing in both mice and rats. Locking plates, external fixators, intramedullary screws, the locking nail and the pin-clip device allow different degrees of stability resulting in various amounts of endochondral and intramembranous healing. The use of common pins that do not provide rotational and axial stability during fracture stabilization should be discouraged in the future. Analyses should include at least biomechanical and histological evaluations, even if the focus of the study is directed towards the elucidation of molecular mechanisms of fracture healing using the largely available spectrum of antibodies and gene-targeted animals to study molecular mechanisms of fracture healing. This review discusses distinct requirements for the experimental setups as well as the advantages and pitfalls of the different fixation techniques in rats and mice.


Clinical Orthopaedics and Related Research | 1996

Early, full weightbearing with flexible fixation delays fracture healing

Peter Augat; Josef Merk; Anita Ignatius; Kristen Margevicius; Gerhard Bauer; Dieter Rosenbaum; Lutz Claes

Secondary fracture healing is known to be accelerated by the process of periosteal callus formation that can be induced by flexible fracture fixation in connection with loading of the injured extremity. The purpose of this study was to compare the healing of experimental fractures of long bones in sheep under early weightbearing with that of fractures under delayed, steadily increasing weightbearing. Differences in the quality of fracture healing were described by biomechanical (rigidity of fracture, indentation stiffness of callus) and histologic methods. Prevention from early, full weightbearing resulted in a higher flexural rigidity of the fracture, an increased mechanical stiffness of the callus tissue, and an enhanced bone formation at the healing front. Although early loading of a fresh fracture initiated an enormous amount of periosteal callus, the healing of the osteotomy was significantly delayed, and the quality of the newly formed tissue was reduced as compared with fractures with a reduced loading situation. A reduction of load transfer by delaying full weightbearing is advantageous for the healing of fractures stabilized with flexible fixation systems.


Journal of Investigative Dermatology | 2014

TSG-6 Released from Intradermally Injected Mesenchymal Stem Cells Accelerates Wound Healing and Reduces Tissue Fibrosis in Murine Full-Thickness Skin Wounds

Yu Qi; Dongsheng Jiang; Anca Sindrilaru; Agatha Stegemann; Susanne Schatz; Nicolai Treiber; Markus Rojewski; Hubert Schrezenmeier; Seppe Vander Beken; Meinhard Wlaschek; Markus Böhm; Andreas M. Seitz; Natalie Scholz; Lutz Dürselen; Jürgen Brinckmann; Anita Ignatius; Karin Scharffetter-Kochanek

Proper activation of macrophages (Mφ) in the inflammatory phase of acute wound healing is essential for physiological tissue repair. However, there is a strong indication that robust Mφ inflammatory responses may be causal for the fibrotic response always accompanying adult wound healing. Using a complementary approach of in vitro and in vivo studies, we here addressed the question of whether mesenchymal stem cells (MSCs)-due to their anti-inflammatory properties-would control Mφ activation and tissue fibrosis in a murine model of full-thickness skin wounds. We have shown that the tumor necrosis factor-α (TNF-α)-stimulated protein 6 (TSG-6) released from MSCs in co-culture with activated Mφ or following injection into wound margins suppressed the release of TNF-α from activated Mφ and concomitantly induced a switch from a high to an anti-fibrotic low transforming growth factor-β1 (TGF-β1)/TGF-β3 ratio. This study provides insight into what we believe to be a previously undescribed multifaceted role of MSC-released TSG-6 in wound healing. MSC-released TSG-6 was identified to improve wound healing by limiting Mφ activation, inflammation, and fibrosis. TSG-6 and MSC-based therapies may thus qualify as promising strategies to enhance tissue repair and to prevent excessive tissue fibrosis.

Collaboration


Dive into the Anita Ignatius's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge