Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anita K. Patlolla is active.

Publication


Featured researches published by Anita K. Patlolla.


EXS | 2012

Heavy metal toxicity and the environment.

Paul B. Tchounwou; Clement Yedjou; Anita K. Patlolla; Dwayne J. Sutton

Heavy metals are naturally occurring elements that have a high atomic weight and a density at least five times greater than that of water. Their multiple industrial, domestic, agricultural, medical, and technological applications have led to their wide distribution in the environment, raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. They are also classified as human carcinogens (known or probable) according to the US Environmental Protection Agency and the International Agency for Research on Cancer. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, genotoxicity, and carcinogenicity.


Toxicologic Pathology | 2003

Carcinogenic and systemic health effects associated with arsenic exposure: A critical review

Paul B. Tchounwou; Anita K. Patlolla; Jose A. Centeno

Arsenic and arsenic containing compounds are human carcinogens. Exposure to arsenic occurs occupationally in several industries, including mining, pesticide, pharmaceutical, glass and microelectronics, as well as environmentally from both industrial and natural sources. Inhalation is the principal route of arsenic exposure in occupational settings, while ingestion of contaminated drinking water is the predominant source of significant environmental exposure globally. Drinking water contamination by arsenic remains a major public health problem. Acute and chronic arsenic exposure via drinking water has been reported in many countries of the world, where a large proportion of drinking water is contaminated with high concentrations of arsenic. General health effects that are associated with arsenic exposure include cardiovascular and peripheral vascular disease, developmental anomalies, neurologic and neurobehavioural disorders, diabetes, hearing loss, portal fibrosis, hematologic disorders (anemia, leukopenia and eosinophilia) and multiple cancers: significantly higher standardized mortality rates and cumulative mortality rates for cancers of the skin, lung, liver, urinary bladder, kidney, and colon in many areas of arsenic pollution. Although several epidemiological studies have documented the sources of exposure and the global impact of arsenic contamination, the mechanisms by which arsenic induces health effects, including cancer, are not well characterized. Further research is needed to provide a better understanding of the pathobiology of arsenic-induced diseases and to better define the toxicologic pathology of arsenic in various organ systems. In this review, we provide and discuss the underlying pathology and nature of arsenic-induced lesions. Such information is critical for understanding the magnitude of health effects associated with arsenic exposure throughout the world.


Toxicologic Pathology | 2003

Invited Reviews: Carcinogenic and Systemic Health Effects Associated with Arsenic Exposure—A Critical Review

Paul B. Tchounwou; Anita K. Patlolla; Jose A. Centeno

Arsenic and arsenic containing compounds are human carcinogens. Exposure to arsenic occurs occupationally in several industries, including mining, pesticide, pharmaceutical, glass and microelectronics, as well as environmentally from both industrial and natural sources. Inhalation is the principal route of arsenic exposure in occupational settings, while ingestion of contaminated drinking water is the predominant source of significant environmental exposure globally. Drinking water contamination by arsenic remains a major public health problem. Acute and chronic arsenic exposure via drinking water has been reported in many countries of the world, where a large proportion of drinking water is contaminated with high concentrations of arsenic. General health effects that are associated with arsenic exposure include cardiovascular and peripheral vascular disease, developmental anomalies, neurologic and neurobehavioural disorders, diabetes, hearing loss, portal fibrosis, hematologic disorders (anemia, leukopenia and eosinophilia) and multiple cancers: significantly higher standardized mortality rates and cumulative mortality rates for cancers of the skin, lung, liver, urinary bladder, kidney, and colon in many areas of arsenic pollution. Although several epidemiological studies have documented the sources of exposure and the global impact of arsenic contamination, the mechanisms by which arsenic induces health effects, including cancer, are not well characterized. Further research is needed to provide a better understanding of the pathobiology of arsenic-induced diseases and to better define the toxicologic pathology of arsenic in various organ systems. In this review, we provide and discuss the underlying pathology and nature of arsenic-induced lesions. Such information is critical for understanding the magnitude of health effects associated with arsenic exposure throughout the world.


Molecular and Cellular Biochemistry | 2004

Arsenic toxicity, mutagenesis, and carcinogenesis--a health risk assessment and management approach.

Paul B. Tchounwou; Jose A. Centeno; Anita K. Patlolla

A comprehensive analysis of published data indicates that arsenic exposure induces cardiovascular diseases, developmental abnormalities, neurologic and neurobehavioral disorders, diabetes, hearing loss, hematologic disorders, and various types of cancer. Although exposure may occur via the dermal, and parenteral routes, the main pathways of exposure include ingestion, and inhalation. The severity of adverse health effects is related to the chemical form of arsenic, and is also time- and dose-dependent. Recent reports have pointed out that arsenic poisoning appears to be one of the major public health problems of pandemic nature. Acute and chronic exposure to arsenic has been reported in several countries of the world where a large proportion of drinking water (groundwater) is contaminated with high concentrations of arsenic. Research has also pointed significantly higher standardized mortality rates for cancers of the bladder, kidney, skin, liver, and colon in many areas of arsenic pollution. There is therefore a great need for developing a comprehensive health risk assessment (RA) concept that should be used by public health officials and environmental managers for an effective management of the health effects associated with arsenic exposure. With a special emphasis on arsenic toxicity, mutagenesis, and carcinogenesis, this paper is aimed at using the National Academy of Sciences RA framework as a guide, for developing a RA paradigm for arsenic based on a comprehensive analysis of the currently available scientific information on its physical and chemical properties, production and use, fate and transport, toxicokinetics, systemic and carcinogenic health effects, regulatory and health guidelines, analytical guidelines and treatment technologies.


Environmental Toxicology | 2009

Oxidative stress, DNA damage, and antioxidant enzyme activity induced by hexavalent chromium in Sprague‐Dawley rats

Anita K. Patlolla; Constance Barnes; Clement Yedjou; Venkatramreddy Velma; Paul B. Tchounwou

Chromium is a widespread industrial compound. The soluble hexavalent chromium Cr (VI) is an environmental contaminant widely recognized as carcinogen, mutagen, and teratogen toward humans and animals. The fate of chromium in the environment is dependent on its oxidation state. The reduction of Cr (VI) to Cr (III) results in the formation of reactive intermediates leading to oxidative tissue damage and cellular injury. In the present investigation, Potassium dichromate was given intraperitoneally to Sprague‐Dawley rats for 5 days with the doses of 2.5, 5.0, 7.5, and 10 mg/kg body weight per day. Oxidative stress including the level of reactive oxygen species (ROS), the extent of lipid peroxidation and the activity of antioxidant enzymes in both liver and kidney was determined. DNA damage in peripheral blood lymphocytes was determined by single‐cell gel electrophoresis (comet assay). The results indicated that administration of Cr (VI) had caused a significant increase of ROS level in both liver and kidney after 5 days of exposure, accompanied with a dose‐dependent increase in superoxide dismutase and catalase activities. The malondialdehyde content in liver and kidney was elevated as compared with the control animals. Dose‐ and time‐dependent effects were observed on DNA damage after 24, 48, 72, and 96 h posttreatment. The results obtained from the present study showed that Cr (VI) could induce dose‐ and time‐dependent effects on DNA damage, both liver and kidney show defense against chromium‐induced oxidative stress by enhancing their antioxidant enzyme activity. However, liver was found to exhibit more antioxidant defense than the kidney.


International Journal of Environmental Research and Public Health | 2012

Genotoxicity of Silver Nanoparticles in Vicia faba: A Pilot Study on the Environmental Monitoring of Nanoparticles

Anita K. Patlolla; Ashley Berry; LaBethani May; Paul B. Tchounwou

The use of silver nanoparticles (AgNPs) in commercial products has increased significantly in recent years. Although there have been some attempts to determine the toxic effects of AgNPs in mammalian and human cell-lines, there is little information on plants which play a vital role in ecosystems. The study reports the use of Vicia faba root-tip meristem to investigate the genotoxicity of AgNPs under modified GENE-TOX test conditions. The root tip cells of V. faba were treated with four different concentrations of engineered AgNPs dispersion to study toxicological endpoints such as mitotic index (MI), chromosomal aberrations (CA) and micronucleus induction (MN). For each concentration, five sets of microscopy observations were carried out. The results demonstrated that AgNPs exposure significantly increased (p < 0.05) the number of chromosomal aberrations, micronuclei, and decreased the MI in exposed groups compared to control. From this study we infer that AgNPs might have penetrated the plant system and may have impaired mitosis causing CA and MN. The results of this study demonstrate that AgNPs are genotoxic to plant cells. Since plant assays have been integrated as a genotoxicity component in risk assessment for detection of environmental mutagens, they should be given full consideration when evaluating the overall toxicological impact of the nanoparticles in the environment.


Environmental Toxicology | 2010

Comparative study of the clastogenicity of functionalized and nonfunctionalized multiwalled carbon nanotubes in bone marrow cells of Swiss-Webster mice.

Anita K. Patlolla; Saber M. Hussain; John J. Schlager; Srikant Patlolla; Paul B. Tchounwou

The development of nanotechnologies may lead to environmental release of nanomaterials that are potentially harmful to human health. Among the nanomaterials, multiwalled carbon nanotubes (MWCNTs) are already commercialized in various products which can be in direct contact with populations. However, few studies address their potential toxicity. Although a few reports on the cytotoxicity of carbon nanotubes (CNTs) have been published, very little is known about their toxicity or genotoxicity in mammalian cells. We have for the first time compared the clastogenic/genotoxic potential of functionalized and nonfunctionalized MWCNTs in bone marrow cells of Swiss‐Webster mice; using mitotic index (MI), chromosome aberrations (CA), micronuclei (MN) formation, and DNA damage in leukocytes as toxicologic endpoints. Six groups of five male mice, each weighing ∼30 ± 2 g, were administered intraperitoneally, once a day for five days with doses of 0.25, 0.5, 0.75, mg/kg body weight (BW) of functionalized and nonfunctionalized MWCNTs. Four vehicle control groups (negative) and a positive control group (carbon black) were also made of 5 mice each. Chromosome and micronuclei from bone marrow cells and comet slides from leukocytes were examined following standard protocols. The results demonstrated that MWCNTs exposure significantly increased (P < 0.05) the number of structural chromosomal aberrations, the frequency of micronucleated cells and the level of DNA damage, and decreased the mitotic index in treated groups compared to control groups. MWCNTs were shown to be toxic at sufficiently high concentrations, however purified functionalized MWCNTs had a higher clastogenic/genotoxic potential compared to nonfunctionalized form of MWCNT. The results of our study suggest that exposure to MWCNT has the potential to cause genetic damage. Hence, careful monitoring should be done with respect to designing/synthesizing biocompatible carbon nanomaterials. Further characterization of their systemic toxicity, genotoxicity and carcinogenicity is also essential.


International Journal of Environmental Research and Public Health | 2009

Potassium Dichromate Induced Cytotoxicity, Genotoxicity and Oxidative Stress in Human Liver Carcinoma (HepG2) Cells

Anita K. Patlolla; Constance Barnes; Diahanna Hackett; Paul B. Tchounwou

Chromium is a widespread industrial waste. The soluble hexavalent chromium Cr (VI) is an environmental contaminant widely recognized to act as a carcinogen, mutagen and teratogen towards humans and animals. The fate of chromium in the environment is dependent on its oxidation state. Hexavalent chromium primarily enters the cells and undergoes metabolic reduction to trivalent chromium, resulting in the formation of reactive oxygen species together with oxidative tissue damage and a cascade of cellular events. However, the results from in vitro studies are often conflicting. The aim of this study was to develop a model to establish relationships between cytotoxicity, genotoxicity and oxidative stress, in human liver carcinoma [HepG2] cells exposed to potassium dichromate. HepG2 cells were cultured following standard protocols and exposed to various concentrations [0–50 μM] of potassium dichromate [K2Cr2O7]. Following exposure to the toxic metal, the MTT assay was performed to assess the cytotoxicity, the thiobarbituric acid test to evaluate the degree of lipid peroxidation as an indicator of oxidative stress and the alkaline comet assay was used to assess DNA damage to study genotoxicity. The results of the study indicated that potassium dichromate was cytotoxic to HepG2 cells. The LD50 values of 8.83 ± 0.89 μg/ml, 6.76 ± 0.99 μg/ml, respectively, for cell mortality at 24 and 48 hrs were observed, indicating a dose- and time-dependent response with regard to the cytotoxic effects of potassium dichromate. A statistically significant increase in the concentration of malondialdehyde [MDA], an indicator of lipid peroxidation, was recorded in exposed cells [15.9 – 69.9 μM] compared to control [13 μM]. Similarly, a strong dose-response relationship (p<0.05) was also obtained with respect to potassium dichromate induced DNA damage (comet assay) in HepG2 cells exposed [3.16 ± 0.70 – 24.84 ± 1.86 microns – mean comet tail length]; [12.4 ± 1.45% – 76 ± 1.49% – % tail DNA] to potassium dichromate than control [3.07 ± 0.26 microns – mean comet tail length]; [2.69 + 0.19% – % Tail DNA], respectively. The results demonstrated that potassium dichromate was highly cytotoxic to HepG2 cells, and its cytotoxicity seems to be mediated by oxidative stress and DNA damage.


Journal of Applied Toxicology | 2011

Biochemical and histopathological evaluation of functionalized single-walled carbon nanotubes in Swiss–Webster mice

Anita K. Patlolla; Brittney McGinnis; Paul B. Tchounwou

With their unique physicochemical properties, single‐walled carbon nanotubes (SWCNTs) have many potential new applications in medicine and industry. A biomedical application of single‐wall carbon nanotubes such as drug delivery requires a fundamental understanding of their fate and toxicological profile after administration. However, the toxicity of SWCNT is barely known when they are introduced into the blood circulation, which is especially vital for their biomedical applications. The aim of this study was to assess the effects, after intraperitoneal injection, of functionalized SWCNTs (carboxyl groups) on reactive oxygen species (ROS) induction and various hepatotoxicity markers (ALT, AST, ALP, LPO and morphology of liver) in the mouse model. We exposed mice to three different concentrations of functionalized SWCNTs (0.25, 0.5 and 0.75 mg kg−1 b.w.) and two controls (negative and positive). Samples were collected 24 h after the last treatment following standard protocols. Exposure to carboxylated functionalized SWCNT induced ROS and enhanced the activities of serum amino‐transferases (ALT/AST) and alkaline phosphatases (ALP) and the concentration of lipid hydroperoxide compared with control. Histopathology of the exposed liver showed a statistically significant effect in the morphological alterations of the tissue compared with controls. The cellular findings reported here do suggest that purified carboxylated functionalized SWCNT has the potential to induce hepatotoxicity in Swiss–Webster mice through activation of the mechanisms of oxidative stress, which is of sufficient significance to warrant in vivo animal exposure studies. However, more studies to clarify the role of functionalization in the in vivo toxicity of SWCNTs are required and parallel comparison is preferred. Copyright


Mutation Research | 2011

Cytogenetic evaluation of malathion-induced toxicity in Sprague-Dawley rats

Pamela D. Moore; Anita K. Patlolla; Paul B. Tchounwou

Malathion is a well known pesticide and is commonly used in many agricultural and non-agricultural settings. Its toxicity has been attributed primarily to the accumulation of acetylcholine (Ach) at nerve junctions, due to the inhibition of acetylcholinesterase (AChE), and consequently overstimulation of the nicotinic and muscarinic receptors. However, the genotoxicity of malathion has not been adequately studied; published studies suggest a weak interaction with the genetic material. In the present study, we investigated the genotoxic potential of malathion in bone marrow cells and peripheral blood obtained from Sprague-Dawley rats using chromosomal aberrations (CAs), mitotic index (MI), and DNA damage as toxicological endpoints. Four groups of four male rats, each weighing approximately 60 ± 2g, were injected intraperitoneally (i.p.) once a day for five days with doses of 2.5, 5, 10, and 20mg/kg body weight (BW) of malathion dissolved in 1% DMSO. The control group was made up of four animals injected with 1% DMSO. All the animals were sacrificed 24h after the fifth day treatment. Chromosome preparations were obtained from bone marrow cells following standard protocols. DNA damage in peripheral blood leukocytes was determined using alkaline single-cell gel electrophoresis (comet assay). Malathion exposure significantly increased the number of structural chromosomal aberrations (CAs) and the percentages of DNA damage, and decreased the mitotic index (MI) in treated groups when compared with the control group. Our results demonstrate that malathion has a clastogenic/genotoxic potential as measured by the bone marrow CA and comet assay in Sprague-Dawley rats.

Collaboration


Dive into the Anita K. Patlolla's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jose A. Centeno

Armed Forces Institute of Pathology

View shared research outputs
Top Co-Authors

Avatar

Clement Yedjou

Jackson State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashley Berry

Jackson State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge