Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anita Narwani is active.

Publication


Featured researches published by Anita Narwani.


Nature | 2012

Biodiversity loss and its impact on humanity

Bradley J. Cardinale; J. Emmett Duffy; Andrew Gonzalez; David U. Hooper; Charles Perrings; Patrick Venail; Anita Narwani; Georgina M. Mace; David Tilman; David A. Wardle; Ann P. Kinzig; Gretchen C. Daily; Michel Loreau; James B. Grace; Anne Larigauderie; Diane S. Srivastava; Shahid Naeem

The most unique feature of Earth is the existence of life, and the most extraordinary feature of life is its diversity. Approximately 9 million types of plants, animals, protists and fungi inhabit the Earth. So, too, do 7 billion people. Two decades ago, at the first Earth Summit, the vast majority of the world’s nations declared that human actions were dismantling the Earth’s ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.


Functional Ecology | 2015

Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies

Patrick Venail; Kevin Gross; Todd H. Oakley; Anita Narwani; Eric Allan; Pedro Flombaum; Forest Isbell; Jasmin Joshi; Peter B. Reich; David Tilman; Jasper van Ruijven; Bradley J. Cardinale

Summary 1. Hundreds of experiments have now manipulated species richness (SR) of various groups of organisms and examined how this aspect of biological diversity influences ecosystem functioning. Ecologists have recently expanded this field to look at whether phylogenetic diversity (PD) among species, often quantified as the sum of branch lengths on a molecular phylogeny leading to all species in a community, also predicts ecological function. Some have hypothesized that phylogenetic divergence should be a superior predictor of ecological function than SR because evolutionary relatedness represents the degree of ecological and functional differentiation among species. But studies to date have provided mixed support for this hypothesis. 2. Here, we reanalyse data from 16 experiments that have manipulated plant SR in grassland ecosystems and examined the impact on above-ground biomass production over multiple time points. Using a new molecular phylogeny of the plant species used in these experiments, we quantified how the PD of plants impacts average community biomass production as well as the stability of community biomass production through time. 3. Using four complementary analyses, we show that, after statistically controlling for variation in SR, PD (the sum of branches in a molecular phylogenetic tree connecting all species in a community) is neither related to mean community biomass nor to the temporal stability of biomass. These results run counter to past claims. However, after controlling for SR, PD was


Journal of Ecology | 2014

The influence of phylogenetic relatedness on species interactions among freshwater green algae in a mesocosm experiment

Patrick Venail; Anita Narwani; Keith J. Fritschie; Markos A. Alexandrou; Todd H. Oakley; Bradley J. Cardinale

Summary 1. A long-standing hypothesis in ecology and evolutionary biology is that closely related species are more ecologically similar to each other and therefore compete more strongly than distant relatives do. A recent hypothesis posits that evolutionary relatedness may also explain the prevalence of mutualisms, with facilitative interactions being more common among distantly related species. Despite the importance of these hypotheses for understanding the structure and function of ecological communities, experimental tests to determine how evolutionary relatedness influences competition and facilitation are still somewhat rare. 2. Here, we report results of a laboratory experiment in which we assessed how competitive and facilitative interactions among eight species of freshwater green algae are influenced by their relatedness. We measured the prevalence of competition and facilitation among 28 pairs of freshwater green algal species that were chosen to span a large gradient of phylogenetic distances. For each species, we first measured its invasion success when introduced into a steady-state population of another resident species. Then, we compared its growth rate when grown alone in monoculture to its growth rate when introduced as an invader. The change in the species’ population growth rate as an invader (sensitivity) is used as a measure of the strength of its interaction with the resident species. A reduced growth rate in the presence of another species indicates competition, whereas an increased growth rate indicates facilitation. 3. Although competition between species was more frequent (75% of interactions), facilitation was common (the other 25% of interactions). We found no significant relationship between the phylogenetic distance separating two interacting species and the success of invasion, nor the prevalence or strength of either competition or facilitation. Interspecific interactions depended more on the identity of the species, with certain taxa consistently acting as good or bad competitors/facilitators. These species were not predictable a priori from their positions on a phylogeny. 4. Synthesis. The phylogenetic relatedness of the green algae species used here did not predict the prevalence of competitive and facilitative interactions, rejecting the hypothesis that close relatives compete strongly and contesting recent evidence that facilitation is likely to occur between distant relatives.


Proceedings of the Royal Society of London B: Biological Sciences | 2014

Evolutionary relatedness does not predict competition and co-occurrence in natural or experimental communities of green algae

Markos A. Alexandrou; Bradley J. Cardinale; J. D. Hall; Charles F. Delwiche; Keith J. Fritschie; Anita Narwani; Patrick Venail; Bastian Bentlage; M. S. Pankey; Todd H. Oakley

The competition-relatedness hypothesis (CRH) predicts that the strength of competition is the strongest among closely related species and decreases as species become less related. This hypothesis is based on the assumption that common ancestry causes close relatives to share biological traits that lead to greater ecological similarity. Although intuitively appealing, the extent to which phylogeny can predict competition and co-occurrence among species has only recently been rigorously tested, with mixed results. When studies have failed to support the CRH, critics have pointed out at least three limitations: (i) the use of data poor phylogenies that provide inaccurate estimates of species relatedness, (ii) the use of inappropriate statistical models that fail to detect relationships between relatedness and species interactions amidst nonlinearities and heteroskedastic variances, and (iii) overly simplified laboratory conditions that fail to allow eco-evolutionary relationships to emerge. Here, we address these limitations and find they do not explain why evolutionary relatedness fails to predict the strength of species interactions or probabilities of coexistence among freshwater green algae. First, we construct a new data-rich, transcriptome-based phylogeny of common freshwater green algae that are commonly cultured and used for laboratory experiments. Using this new phylogeny, we re-analyse ecological data from three previously published laboratory experiments. After accounting for the possibility of nonlinearities and heterogeneity of variances across levels of relatedness, we find no relationship between phylogenetic distance and ecological traits. In addition, we show that communities of North American green algae are randomly composed with respect to their evolutionary relationships in 99% of 1077 lakes spanning the continental United States. Together, these analyses result in one of the most comprehensive case studies of how evolutionary history influences species interactions and community assembly in both natural and experimental systems. Our results challenge the generality of the CRH and suggest it may be time to re-evaluate the validity and assumptions of this hypothesis.


Functional Ecology | 2015

Using phylogenetics in community assembly and ecosystem functioning research

Anita Narwani; Blake Matthews; Jeremy W. Fox; Patrick Venail

Using phylogenetics in community assembly and ecosystem functioning research Anita Narwani*, Blake Matthews, Jeremy Fox and Patrick Venail Eawag, Aquatic Ecology Department, € Uberlandstrasse 133, 8600 D€ ubendorf, Switzerland; Eawag, Aquatic Ecology Department, Seestrasse 79, 6047 Kastanienbaum, Switzerland; Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, AB T2N 1N4, Canada; and Institut F.-A. Forel, University of Geneva, 10, route de Suisse CP 416, 1290 Versoix, Geneva, Switzerland


Bioresource Technology | 2017

Algal polycultures enhance coproduct recycling from hydrothermal liquefaction.

Casey M. Godwin; David C. Hietala; Aubrey R. Lashaway; Anita Narwani; Phillip E. Savage; Bradley J. Cardinale

The aim of this study was to determine if polycultures of algae could enhance tolerance to aqueous-phase coproduct (ACP) from hydrothermal liquefaction (HTL) of algal biomass to produce biocrude. The growth of algal monocultures and polycultures was characterized across a range ACP concentrations and sources. All of the monocultures were either killed or inhibited by 2% ACP, but polycultures of the same species were viable at up to 10%. The addition of ACP increased the growth rate (up to 25%) and biomass production (53%) of polycultures, several of which were more productive in ACP than any monoculture was in the presence or absence of ACP. These results suggest that a cultivation process that applies biodiversity to nutrient recycling could produce more algae with less fertilizer consumption.


Functional Ecology | 2015

Further re‐analyses looking for effects of phylogenetic diversity on community biomass and stability

Bradley J. Cardinale; Patrick Venail; Kevin Gross; Todd H. Oakley; Anita Narwani; Eric Allan; Pedro Flombaum; Jasmin Joshi; Peter B. Reich; David Tilman; Jasper van Ruijven

Species richness (SR) and phylogenetic diversity (PD) are highly correlated measures of plant diversity. Each, by itself, is significantly associated with plant community biomass in biodiversity experiments. As presented by Cadotte (2015) and as we present below, reasonable but alternative analyses that attempt to control for this correlation in different ways provide contradictory or inconclusive support for the hypothesis that PD is superior to SR as a predictor of community biomass. In Venail et al. (2015), we re-analysed data from 16 experimental manipulations of grassland SR to look at how SR and PD influence variation in plant community biomass through time. Using four types of analyses, we showed that, after statistically controlling for variation in SR, PD was not related to community biomass or to the temporal stability of biomass. We did, however, find that SR tends to increase the biomass production of plant communities after controlling for PD. In his comment, Cadotte expressed two concerns about our analyses. One is that we used non-random subsets of experiments, rather than the full data set, for some of our analyses (types 2, 3). We were clear in stating these analyses were based on non-random subsets that were specifically chosen to minimize the SR–PD correlation and avoid problems associated with multicollinearity. We acknowledge that our tests are conservative, a cost of which is that they sacrifice statistical power while, at the same time, minimizing the chance of drawing an incorrect conclusion. But we disagree with Cadotte’s suggestion that our use of non-random data subsets led to ‘biased’ conclusions, and demonstrate later in this response that his claim of bias is unsubstantiated. Cadotte’s second concern was that our analyses did not account for differences in biomass across studies. This is an important criticism to consider; we made a mistake by not controlling for variation in biomass. To address this issue, Cadotte used mixed models where study was included as a random effect, and ran analyses that standardized biomass among sites. Collectively, these led Cadotte to conclude ‘All analyses strongly support previous literature claims about the value of PD and I further show that: (i) PD provides a more powerful explanation of variation in biomass production than species richness; (ii) PD explains variation in biomass production after controlling for richness; and (iii) the use of data subsets inadvertently biased the conclusions’. We have two concerns with Cadotte’s re-analysis. First, Cadotte’s approach largely ignores the concerns we raised about multicollinearity. When two or more predictors


PLOS ONE | 2015

Common Ancestry Is a Poor Predictor of Competitive Traits in Freshwater Green Algae.

Anita Narwani; Markos A. Alexandrou; James Herrin; Alaina Vouaux; Charles Zhou; Todd H. Oakley; Bradley J. Cardinale

Phytoplankton species traits have been used to successfully predict the outcome of competition, but these traits are notoriously laborious to measure. If these traits display a phylogenetic signal, phylogenetic distance (PD) can be used as a proxy for trait variation. We provide the first investigation of the degree of phylogenetic signal in traits related to competition in freshwater green phytoplankton. We measured 17 traits related to competition and tested whether they displayed a phylogenetic signal across a molecular phylogeny of 59 species of green algae. We also assessed the fit of five models of trait evolution to trait variation across the phylogeny. There was no significant phylogenetic signal for 13 out of 17 ecological traits. For 7 traits, a non-phylogenetic model provided the best fit. For another 7 traits, a phylogenetic model was selected, but parameter values indicated that trait variation evolved recently, diminishing the importance of common ancestry. This study suggests that traits related to competition in freshwater green algae are not generally well-predicted by patterns of common ancestry. We discuss the mechanisms by which the link between phylogenetic distance and phenotypic differentiation may be broken.


Environmental Science & Technology | 2017

Ecological Stoichiometry Meets Ecological Engineering: Using Polycultures to Enhance the Multifunctionality of Algal Biocrude Systems

Casey M. Godwin; David C. Hietala; Aubrey R. Lashaway; Anita Narwani; Phillip E. Savage; Bradley J. Cardinale

For algal biofuels to be economically sustainable and avoid exacerbating nutrient pollution, algal cultivation and processing must maximize rates of biofuel production while simultaneously minimizing the consumption of nitrogen (N) and phosphorus (P) fertilizers. We experimentally tested whether algal polycultures could be engineered to improve N and P nutrient-use efficiency compared to monocultures by balancing trade-offs in nutrient-use efficiency and biocrude production. We analyzed the flows of N and P through the processes of cultivation, biocrude production through hydrothermal liquefaction, and nutrient recycling in a laboratory-scale system. None of the six species we examined exhibited high N efficiency, P efficiency, and biocrude production simultaneously; each had poor performance in at least one function (i.e., <25th percentile). Polycultures of two to six species did not outperform the best species in any single function, but some polycultures exhibited more balanced performance and maintained all three functions at higher levels simultaneously than any of the monocultures (i.e., >67th percentile). Moreover, certain polycultures came closer to optimizing all three functions than any of the monocultures. By balancing trade-offs between N and P efficiency and biocrude production, polycultures could be used to simultaneously reduce the demand for both N and P fertilizers by up to 85%.


Genome | 2018

Evolution as an ecosystem process: insights from genomics

Blake Matthews Matthews; Rebecca J. Best; Philine G. D. Feulner; Anita Narwani; Romana Limberger

Evolution is a fundamental ecosystem process. The study of genomic variation of organisms can not only improve our understanding of evolutionary processes, but also of contemporary and future ecosystem dynamics. We argue that integrative research between the fields of genomics and ecosystem ecology could generate new insights. Specifically, studies of biodiversity and ecosystem functioning, evolutionary rescue, and eco-evolutionary dynamics could all benefit from information about variation in genome structure and the genetic architecture of traits, whereas genomic studies could benefit from information about the ecological context of evolutionary dynamics. We propose new ways to help link research on functional genomic diversity with (reciprocal) interactions between phenotypic evolution and ecosystem change. Despite numerous challenges, we anticipate that the wealth of genomic data being collected on natural populations will improve our understanding of ecosystems.

Collaboration


Dive into the Anita Narwani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Todd H. Oakley

University of California

View shared research outputs
Top Co-Authors

Avatar

David Tilman

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phillip E. Savage

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diane S. Srivastava

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Ann P. Kinzig

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge