Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anita Ordas is active.

Publication


Featured researches published by Anita Ordas.


Molecular Immunology | 2009

Deep sequencing of the zebrafish transcriptome response to mycobacterium infection.

Zoltán Hegedus; Anna Zakrzewska; Vilmos C. Ágoston; Anita Ordas; Peter I. Racz; Mátyás Mink; Herman P. Spaink; Annemarie H. Meijer

Novel high-throughput deep sequencing technology has dramatically changed the way that the functional complexity of transcriptomes can be studied. Here we report on the first use of this technology to gain insight into the wide range of transcriptional responses that are associated with an infectious disease process. Using Solexa/Illuminas digital gene expression (DGE) system, a tag-based transcriptome sequencing method, we investigated mycobacterium-induced transcriptome changes in a model vertebrate species, the zebrafish. We obtained a sequencing depth of over 5 million tags per sample with strong correlation between replicates. Tag mapping indicated that healthy and infected adult zebrafish express over 70% of all genes represented in transcript databases. Comparison of the data with a previous multi-platform microarray analysis showed that both types of technologies identified regulation of similar functional groups of genes. However, the unbiased nature of DGE analysis provided insights that microarray analysis could not have achieved. In particular, we show that DGE data sets are instrumental for verification of predicted gene models and allowed us to detect mycobacterium-regulated switching between different transcript isoforms. Moreover, genomic mapping of infection-induced DGE tags revealed novel transcript forms for which any previous EST-based evidence of expression was lacking. In conclusion, our deep sequencing analysis revealed in depth the high degree of transcriptional complexity of the host response to mycobacterial infection and resulted in the discovery and validation of new gene products with induced expression in infected individuals.


Fish & Shellfish Immunology | 2011

Deep sequencing of the innate immune transcriptomic response of zebrafish embryos to Salmonella infection

Anita Ordas; Zoltán Hegedus; Christiaan V. Henkel; Oliver W. Stockhammer; Derek Butler; Hans J. Jansen; Peter I. Racz; Mátyás Mink; Herman P. Spaink; Annemarie H. Meijer

Salmonella enterica serovar Typhimurium (S. typhimurium) bacteria cause an inflammatory and lethal infection in zebrafish embryos. To characterize the embryonic innate host response at the transcriptome level, we have extended and validated previous microarray data by Illumina next-generation sequencing analysis. We obtained 10 million sequence reads from control and Salmonella-infected zebrafish embryos using a tag-based sequencing method (DGE or Tag-Seq) and 15 million reads using whole transcript sequencing (RNA-Seq), which respectively mapped to circa 65% and 85% of 28,716 known Ensembl transcripts. Both sequencing methods showed a strong correlation of sequence read counts per transcript and an overlap of 241 transcripts differentially expressed in response to infection. A lower overlap of 165 transcripts was observed with previous microarray data. Based on the combined sequencing-based and microarray-based transcriptome data we compiled an annotated reference set of infection-responsive genes in zebrafish embryos, encoding transcription factors, signal transduction proteins, cytokines and chemokines, complement factors, proteins involved in apoptosis and proteolysis, proteins with anti-microbial activities, as well as many known or novel proteins not previously linked to the immune response. Furthermore, by comparison of the deep sequencing data of S. typhimurium infection in zebrafish embryos with previous deep sequencing data of Mycobacterium marinum infection in adult zebrafish we derived a common set of infection-responsive genes. This gene set consists of known and putative innate host defense genes that are expressed both in the absence and presence of a fully developed adaptive immune system and that provide a valuable reference for future studies of host-pathogen interactions using zebrafish infection models.


BMC Immunology | 2011

Comparison of static immersion and intravenous injection systems for exposure of zebrafish embryos to the natural pathogen Edwardsiella tarda

Joost J. van Soest; Oliver W. Stockhammer; Anita Ordas; Guido V. Bloemberg; Herman P. Spaink; Annemarie H. Meijer

BackgroundThe zebrafish embryo is an important in vivo model to study the host innate immune response towards microbial infection. In most zebrafish infectious disease models, infection is achieved by micro-injection of bacteria into the embryo. Alternatively, Edwardsiella tarda, a natural fish pathogen, has been used to treat embryos by static immersion. In this study we used transcriptome profiling and quantitative RT-PCR to analyze the immune response induced by E. tarda immersion and injection.ResultsMortality rates after static immersion of embryos in E. tarda suspension varied between 25-75%, while intravenous injection of bacteria resulted in 100% mortality. Quantitative RT-PCR analysis on the level of single embryos showed that expression of the proinflammatory marker genes il1b and mmp9 was induced only in some embryos that were exposed to E. tarda in the immersion system, whereas intravenous injection of E. tarda led to il1b and mmp9 induction in all embryos. In addition, microarray expression profiles of embryos subjected to immersion or injection showed little overlap. E. tarda-injected embryos displayed strong induction of inflammatory and defense genes and of regulatory genes of the immune response. E. tarda-immersed embryos showed transient induction of the cytochrome P450 gene cyp1a. This gene was also induced after immersion in Escherichia coli and Pseudomonas aeruginosa suspensions, but, in contrast, was not induced upon intravenous E. tarda injection. One of the rare common responses in the immersion and injection systems was induction of irg1l, a homolog of a murine immunoresponsive gene of unknown function.ConclusionsBased on the differences in mortality rates between experiments and gene expression profiles of individual embryos we conclude that zebrafish embryos cannot be reproducibly infected by exposure to E. tarda in the immersion system. Induction of il1b and mmp9 was consistently observed in embryos that had been systemically infected by intravenous injection, while the early transcriptional induction of cyp1a and irg1l in the immersion system may reflect an epithelial or other tissue response towards cell membrane or other molecules that are shed or released by bacteria. Our microarray expression data provide a useful reference for future analysis of signal transduction pathways underlying the systemic innate immune response versus those underlying responses to external bacteria and secreted virulence factors and toxins.


Methods | 2013

Robotic injection of zebrafish embryos for high-throughput screening in disease models

Herman P. Spaink; Chao Cui; Malgorzata Wiweger; Hans J. Jansen; Wouter J. Veneman; Rubén Marín-Juez; Jan de Sonneville; Anita Ordas; Vincenzo Torraca; Wietske van der Ent; William Leenders; Annemarie H. Meijer; B. Ewa Snaar-Jagalska; Ron P. Dirks

The increasing use of zebrafish larvae for biomedical research applications is resulting in versatile models for a variety of human diseases. These models exploit the optical transparency of zebrafish larvae and the availability of a large genetic tool box. Here we present detailed protocols for the robotic injection of zebrafish embryos at very high accuracy with a speed of up to 2000 embryos per hour. These protocols are benchmarked for several applications: (1) the injection of DNA for obtaining transgenic animals, (2) the injection of antisense morpholinos that can be used for gene knock-down, (3) the injection of microbes for studying infectious disease, and (4) the injection of human cancer cells as a model for tumor progression. We show examples of how the injected embryos can be screened at high-throughput level using fluorescence analysis. Our methods open up new avenues for the use of zebrafish larvae for large compound screens in the search for new medicines.


BMC Genomics | 2013

MicroRNA-146 function in the innate immune transcriptome response of zebrafish embryos to Salmonella typhimurium infection.

Anita Ordas; Zakia Kanwal; Valesca Lindenberg; Julien Rougeot; Mátyás Mink; Herman P. Spaink; Annemarie H. Meijer

BackgroundMicroRNAs (miRNAs) have recently been shown to play important roles in development of the immune system and in fine-tuning of immune responses. Human miR-146 family members are known as inflammation-inducible miRNAs involved in negative feedback regulation of Toll-like receptor (TLR) signalling. Dysregulation of the miR-146 family has often been linked to inflammatory diseases and malignancies. This study reports on miR-146a and miR-146b as infection-inducible miRNAs in zebrafish, which has emerged as a model species for human disease.ResultsUsing a custom-designed microarray platform for miRNA expression we found that both members of the zebrafish miR-146 family, miR-146a and miR-146b, were commonly induced by infection of zebrafish embryos with Salmonella typhimurium and by infection of adult fish with Mycobacterium marinum. The induction of these miRNAs was confirmed by Taqman miRNA assays. Subsequently, we used zebrafish embryos, in which adaptive immunity is not yet active, as an in vivo system to investigate the role of miR-146 in the innate immune response to S. typhimurium infection. Knockdown of traf6 and use of myd88 mutants demonstrated that the induction of miR-146a and miR-146b by S. typhimurium infection was affected by disruption of the MyD88-Traf6 pathway that mediates transduction of TLR signals and cytokine responses. In turn, knockdown of miR-146 itself had no major effects on the expression of known targets of MyD88-Traf6 signalling. Instead, RNA sequencing analysis showed that miR-146 knockdown led to an increased induction of six members of the apolipoprotein gene family in S. typhimurium-infected embryos.ConclusionBased on microarray analysis and Taqman miRNA assays we conclude that members of the miR-146 family, which is highly conserved between fish and human, are induced by bacterial infection in zebrafish in a MyD88 and Traf6 dependent manner. The combined knockdown of miR-146a and miR-146b in zebrafish embryos infected with S. typhimurium had no major effect on the expression of pro-inflammatory genes and transcription factors known to be downstream of the MyD88-Traf6 pathway. In contrast, apolipoprotein-mediated lipid transport emerged as an infection-inducible pathway under miR-146 knockdown conditions, suggesting a possible function of miR-146 in regulating lipid metabolism during inflammation.


Angewandte Chemie | 2013

In Vitro and In Vivo Supramolecular Modification of Biomembranes Using a Lipidated Coiled‐Coil Motif

Harshal R. Zope; Frank Versluis; Anita Ordas; Jens Voskuhl; Herman P. Spaink; Alexander Kros

The molecular building blocks available in biological systems self-assemble into defined structures in an extremely controlled manner. These structures must be flexible and adaptive to the environment in order to carry out their function in a regulated manner. Therefore, nature uses multiple weak interactions (e.g. hydrogen bonding and van der Waals interactions) to act as the glue to hold these structures together. When many weak interactions cooperatively combine, relatively stable entities are produced, which retain the ability to respond to external stimuli such as fluctuations in ion concentration, pH, and temperature. For many years, nature has been a source of inspiration for supramolecular chemistry. Scientists typically follow the bottom-up approach and design relatively simple molecules which assemble into functional materials with well-defined properties. Recent progress has resulted in molecular systems that are responsive to multiple stimuli and are therefore highly controlled, emulating nature ever more closely. A relatively new development is the application of supramolecular constructs in in vitro and in vivo environments to directly study and influence biological processes in live cells. Chemically tailored systems can be integrated into cell membranes, for example. This enables the modification or regulation of cellular behavior through external artificial signals. There are two approaches for introducing chemical species into a cell membrane by supramolecular chemistry: 1) specific binding of guest molecules to membrane-anchored biomolecules such as native proteins and 2) nonspecific labeling of membranes with the aid of hydrophobic and electrostatic interactions or through a chemical crosslinker. Lipidated peptides are particularly good candidates for application in biological systems as their aggregation behavior can be controlled by carefully balancing the hydrophobicity of the anchor and the hydrophilicity of the cargo; this aids the incorporation of lipidated peptides into membranes. Here we describe the use of a coiled-coil motif as the peptide segment, a highly specific recognition system that can be introduced into live cells. The coiled-coil motif acts as molecular Velcro and can thus be used to link distinct molecular constructs. An example of the specific labeling of proteins through coiled-coil formation was recently supplied by Matsuzaki et al. Surface modification through the nonspecific binding of polymers to cell membranes has also been studied, for example by Ijiro et al. Lipid-grafted polymers adhere to cell membranes and could potentially act as a scaffold to which a wide range of functional moieties could be attached, thereby intervening in the chemistry of the cell. Furthermore, cationic graft copolymers have also been shown to interact electrostatically with cell membranes, resulting in chemically altered cell membranes. Although these examples illustrate that in vitro membrane functionalization is a highly rewarding strategy, there are currently no examples of efficient in vivo strategies. Therefore, it is our goal to transiently modify lipid membranes through specific supramolecular interactions in in vitro and in vivo environments. For this purpose, we use a pair of complementary coiled-coil-forming lipidated peptides (E and K peptides) to specifically introduce a noncovalent and bio-orthogonal recognition motif to biological membranes (Scheme 1). Here, we describe a generic supramolecular tool which allows us to rapidly and efficiently form coiled-coil motifs at the surface of biological membranes. This is of interest as a wide range of molecular constructs can be introduced to the surface of the cell in this way. Coiled-coil-forming peptides E [(EIAALEK)3] and K [(KIAALKE)3] [12] were first covalently conjugated to PEG12 spacers (PEG= polyethylene glycol). Subsequently, a cholesterol moiety was coupled to the pegylated peptides yielding CPE and CPK (Scheme 1A). The cholesterol moiety allows for the immediate insertion of the lipidated peptides into membranes through hydrophobic interactions and the PEG12 moiety was incorporated to aid efficient molecular recognition between the peptide segments E and K. Recently we showed that upon the addition of micellar solutions of either CPE or CPK to plain liposomes, the lipidated peptides spontaneously inserted into liposomal membranes. In the current study, CHO cell membranes (CHO=Chinese hamster ovary) and the skin of zebrafish embryos were modified with coiled-coil-forming peptides by the addition of a micellar solution of CPE or CPK, resulting in immediate incorporation of these amphiphiles into the membranes. Subsequently, the complementary peptide was added, result[*] M. Sc. H. R. Zope, M. Sc. F. Versluis, Dr. J. Voskuhl, Dr. A. Kros Soft Matter Chemistry, Leiden Institute of Chemistry Leiden University P.O. Box 9502, 2300 RA Leiden (The Netherlands) E-mail: [email protected]


Antimicrobial Agents and Chemotherapy | 2015

Testing Tuberculosis Drug Efficacy in a Zebrafish High-Throughput Translational Medicine Screen

Anita Ordas; Robert-Jan Raterink; Fraser Cunningham; Hans J. Jansen; Malgorzata Wiweger; Susanne Jong-Raadsen; Sabine Bos; Robert H. Bates; David Barros; Annemarie H. Meijer; Rob J. Vreeken; Lluís Ballell-Pages; Ron P. Dirks; Thomas Hankemeier; Herman P. Spaink

ABSTRACT The translational value of zebrafish high-throughput screens can be improved when more knowledge is available on uptake characteristics of potential drugs. We investigated reference antibiotics and 15 preclinical compounds in a translational zebrafish-rodent screening system for tuberculosis. As a major advance, we have developed a new tool for testing drug uptake in the zebrafish model. This is important, because despite the many applications of assessing drug efficacy in zebrafish research, the current methods for measuring uptake using mass spectrometry do not take into account the possible adherence of drugs to the larval surface. Our approach combines nanoliter sampling from the yolk using a microneedle, followed by mass spectrometric analysis. To date, no single physicochemical property has been identified to accurately predict compound uptake; our method offers a great possibility to monitor how any novel compound behaves within the system. We have correlated the uptake data with high-throughput drug-screening data from Mycobacterium marinum-infected zebrafish larvae. As a result, we present an improved zebrafish larva drug-screening platform which offers new insights into drug efficacy and identifies potential false negatives and drugs that are effective in zebrafish and rodents. We demonstrate that this improved zebrafish drug-screening platform can complement conventional models of in vivo Mycobacterium tuberculosis-infected rodent assays. The detailed comparison of two vertebrate systems, fish and rodent, may give more predictive value for efficacy of drugs in humans.


Journal of Visualized Experiments | 2014

Establishment and optimization of a high throughput setup to study Staphylococcus epidermidis and Mycobacterium marinum infection as a model for drug discovery.

Wouter J. Veneman; Rubén Marín-Juez; Jan de Sonneville; Anita Ordas; Susanne Jong-Raadsen; Annemarie H. Meijer; Herman P. Spaink

Zebrafish are becoming a valuable tool in the preclinical phase of drug discovery screenings as a whole animal model with high throughput screening possibilities. They can be used to bridge the gap between cell based assays at earlier stages and in vivo validation in mammalian models, reducing, in this way, the number of compounds passing through to testing on the much more expensive rodent models. In this light, in the present manuscript is described a new high throughput pipeline using zebrafish as in vivo model system for the study of Staphylococcus epidermidis and Mycobacterium marinum infection. This setup allows the generation and analysis of large number of synchronous embryos homogenously infected. Moreover the flexibility of the pipeline allows the user to easily implement other platforms to improve the resolution of the analysis when needed. The combination of the zebrafish together with innovative high throughput technologies opens the field of drug testing and discovery to new possibilities not only because of the strength of using a whole animal model but also because of the large number of transgenic lines available that can be used to decipher the mode of action of new compounds.


Immunogenetics | 2015

Analysis of RNAseq datasets from a comparative infectious disease zebrafish model using GeneTiles bioinformatics.

Wouter J. Veneman; Jan de Sonneville; Kees-Jan van der Kolk; Anita Ordas; Zaid Al-Ars; Annemarie H. Meijer; Herman P. Spaink

We present a RNA deep sequencing (RNAseq) analysis of a comparison of the transcriptome responses to infection of zebrafish larvae with Staphylococcus epidermidis and Mycobacterium marinum bacteria. We show how our developed GeneTiles software can improve RNAseq analysis approaches by more confidently identifying a large set of markers upon infection with these bacteria. For analysis of RNAseq data currently, software programs such as Bowtie2 and Samtools are indispensable. However, these programs that are designed for a LINUX environment require some dedicated programming skills and have no options for visualisation of the resulting mapped sequence reads. Especially with large data sets, this makes the analysis time consuming and difficult for non-expert users. We have applied the GeneTiles software to the analysis of previously published and newly obtained RNAseq datasets of our zebrafish infection model, and we have shown the applicability of this approach also to published RNAseq datasets of other organisms by comparing our data with a published mammalian infection study. In addition, we have implemented the DEXSeq module in the GeneTiles software to identify genes, such as glucagon A, that are differentially spliced under infection conditions. In the analysis of our RNAseq data, this has led to the possibility to improve the size of data sets that could be efficiently compared without using problem-dedicated programs, leading to a quick identification of marker sets. Therefore, this approach will also be highly useful for transcriptome analyses of other organisms for which well-characterised genomes are available.


Acta Microbiologica Et Immunologica Hungarica | 2011

A marked shift in the serotypes of pneumococci isolated from healthy children in Szeged, Hungary, over a 6-year period.

Adrienn Tóthpál; Anita Ordas; Edit Hajdú; Szilvia Kardos; Erzsébet Nagy; Károly Nagy; Orsolya Dobay

Streptococcus pneumoniae is an important pathogen with significant morbidity and mortality rates worldwide, especially among children <5 years. Healthy carriers are the most important sources of pneumococcal infections, and the nasopharyngeal colonisation is the most prevalent among children attending communities such as day-care centres (DCCs). The conjugate pneumococcal vaccines (PCVs) were shown to have an impact on the colonisation, and so play an important role in inhibiting infections. In this study we compared the nasal carriage of healthy children attending DCCs in Szeged, Hungary in 2003/2004, when nobody was vaccinated, and in 2010, when already 1/5 of the children received PCV-7. Significant differences were observed in the serotype distribution, representing a marked shift from the previously widespread vaccine-types (mostly 6A or 14) to others (11A and 23F). The new serotypes showed higher antibiotic susceptibility. The bacterium exchange between children was clear from the pulsed-field gel electrophoresis (PFGE) patterns, and the circulation of certain international clones plays also a role in these dynamic changes.

Collaboration


Dive into the Anita Ordas's collaboration.

Top Co-Authors

Avatar

Herman P. Spaink

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Annemarie H. Meijer

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hans J. Jansen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malgorzata Wiweger

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge