Anita Sarkar
Scripps Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anita Sarkar.
Science | 2016
Joseph G. Jardine; Daniel W. Kulp; Colin Havenar-Daughton; Anita Sarkar; Bryan Briney; Devin Sok; Fabian Sesterhenn; June Ereño-Orbea; Oleksandr Kalyuzhniy; Isaiah Deresa; Xiaozhen Hu; Skye Spencer; Meaghan Jones; Erik Georgeson; Yumiko Adachi; Michael Kubitz; Allan C. deCamp; Jean-Philippe Julien; Ian A. Wilson; Dennis R. Burton; Shane Crotty; William R. Schief
Baby steps toward bNAbs Some HIV-infected individuals develop heavily mutated, broadly neutralizing antibodies (bNAbs) that target HIV. Scientists aim to design vaccines that would elicit such antibodies. Jardine et al. report an important step toward this goal: They engineered an immunogen that could engage B cells from HIV-uninfected individuals that express the germline versions of the immunoglobulin genes harbored by a particular class of bNAbs. The frequencies of these B cells, their affinities for the immunogen, and structural analysis suggest that the immunogen is a promising candidate. Further shaping of the B cell response with subsequent immunogens may eventually elicit bNAbs in people. Science, this issue p. 1458 People that have not been infected with HIV can harbor HIV-1 broadly neutralizing antibody B cell precursors. Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. Using deep mutational scanning and multitarget optimization, we developed a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.
Cell | 2016
Bryan Briney; Devin Sok; Joseph G. Jardine; Daniel W. Kulp; Patrick Skog; Sergey Menis; Ronald Jacak; Oleksandr Kalyuzhniy; Natalia de Val; Fabian Sesterhenn; Khoa Le; Alejandra Ramos; Meaghan Jones; Karen L. Saye-Francisco; Tanya R. Blane; Skye Spencer; Erik Georgeson; Xiaozhen Hu; Gabriel Ozorowski; Yumiko Adachi; Michael Kubitz; Anita Sarkar; Ian A. Wilson; Andrew B. Ward; David Nemazee; Dennis R. Burton; William R. Schief
Summary Induction of broadly neutralizing antibodies (bnAbs) is a primary goal of HIV vaccine development. VRC01-class bnAbs are important vaccine leads because their precursor B cells targeted by an engineered priming immunogen are relatively common among humans. This priming immunogen has demonstrated the ability to initiate a bnAb response in animal models, but recall and maturation toward bnAb development has not been shown. Here, we report the development of boosting immunogens designed to guide the genetic and functional maturation of previously primed VRC01-class precursors. Boosting a transgenic mouse model expressing germline VRC01 heavy chains produced broad neutralization of near-native isolates (N276A) and weak neutralization of fully native HIV. Functional and genetic characteristics indicate that the boosted mAbs are consistent with partially mature VRC01-class antibodies and place them on a maturation trajectory that leads toward mature VRC01-class bnAbs. The results show how reductionist sequential immunization can guide maturation of HIV bnAb responses.
PLOS Pathogens | 2016
Joseph G. Jardine; Devin Sok; Jean-Philippe Julien; Bryan Briney; Anita Sarkar; Chi Hui Liang; Erin A. Scherer; Carole J. Henry Dunand; Yumiko Adachi; Devan Diwanji; Jessica Hsueh; Meaghan Jones; Oleksandr Kalyuzhniy; Michael Kubitz; Skye Spencer; Matthias Pauthner; Karen L. Saye-Francisco; Fabian Sesterhenn; Patrick C. Wilson; Denise M. Galloway; Robyn L. Stanfield; Ian A. Wilson; Dennis R. Burton; William R. Schief
An optimal HIV vaccine should induce broadly neutralizing antibodies (bnAbs) that neutralize diverse viral strains and subtypes. However, potent bnAbs develop in only a small fraction of HIV-infected individuals, all contain rare features such as extensive mutation, insertions, deletions, and/or long complementarity-determining regions, and some are polyreactive, casting doubt on whether bnAbs to HIV can be reliably induced by vaccination. We engineered two potent VRC01-class bnAbs that minimized rare features. According to a quantitative features frequency analysis, the set of features for one of these minimally mutated bnAbs compared favorably with all 68 HIV bnAbs analyzed and was similar to antibodies elicited by common vaccines. This same minimally mutated bnAb lacked polyreactivity in four different assays. We then divided the minimal mutations into spatial clusters and dissected the epitope components interacting with those clusters, by mutational and crystallographic analyses coupled with neutralization assays. Finally, by synthesizing available data, we developed a working-concept boosting strategy to select the mutation clusters in a logical order following a germline-targeting prime. We have thus developed potent HIV bnAbs that may be more tractable vaccine goals compared to existing bnAbs, and we have proposed a strategy to elicit them. This reductionist approach to vaccine design, guided by antibody and antigen structure, could be applied to design candidate vaccines for other HIV bnAbs or protective Abs against other pathogens.
Immunity | 2016
Devin Sok; Matthias Pauthner; Bryan Briney; Jeong Hyun Lee; Karen L. Saye-Francisco; Jessica Hsueh; Alejandra Ramos; Khoa Le; Meaghan Jones; Joseph G. Jardine; Raiza Bastidas; Anita Sarkar; Chi-Hui Liang; Sachin S. Shivatare; Chung-Yi Wu; William R. Schief; Chi-Huey Wong; Ian A. Wilson; Andrew B. Ward; Jiang Zhu; Pascal Poignard; Dennis R. Burton
The dense patch of high-mannose-type glycans surrounding the N332 glycan on the HIV envelope glycoprotein (Env) is targeted by multiple broadly neutralizing antibodies (bnAbs). This region is relatively conserved, implying functional importance, the origins of which are not well understood. Here we describe the isolation of new bnAbs targeting this region. Examination of these and previously described antibodies to Env revealed that four different bnAb families targeted the (324)GDIR(327) peptide stretch at the base of the gp120 V3 loop and its nearby glycans. We found that this peptide stretch constitutes part of the CCR5 co-receptor binding site, with the high-mannose patch glycans serving to camouflage it from most antibodies. GDIR-glycan bnAbs, in contrast, bound both (324)GDIR(327) peptide residues and high-mannose patch glycans, which enabled broad reactivity against diverse HIV isolates. Thus, as for the CD4 binding site, bnAb effectiveness relies on circumventing the defenses of a critical functional region on Env.
Immunity | 2016
Adriana Irimia; Anita Sarkar; Robyn L. Stanfield; Ian A. Wilson
Numerous studies of the anti-HIV-1 envelope glycoprotein 41 (gp41) broadly neutralizing antibody 4E10 suggest that 4E10 also interacts with membrane lipids, but the antibody regions contacting lipids and its orientation with respect to the viral membrane are unknown. Vaccine immunogens capable of re-eliciting these membrane proximal external region (MPER)-like antibodies may require a lipid component to be successful. We performed a systematic crystallographic study of lipid binding to 4E10 to identify lipids bound by the antibody and the lipid-interacting regions. We identified phosphatidic acid, phosphatidylglycerol, and glycerol phosphate as specific ligands for 4E10 in the crystal structures. 4E10 used its CDRH1 loop to bind the lipid head groups, while its CDRH3 interacted with the hydrophobic lipid tails. Identification of the lipid binding sites on 4E10 may aid design of immunogens for vaccines that include a lipid component in addition to the MPER on gp41 for generation of broadly neutralizing antibodies.
PLOS Pathogens | 2017
Adriana Irimia; Andreia M. Serra; Anita Sarkar; Ronald Jacak; Oleksandr Kalyuzhniy; Devin Sok; Karen L. Saye-Francisco; Torben Schiffner; Ryan Tingle; Michael Kubitz; Yumiko Adachi; Robyn L. Stanfield; Marc C. Deller; Dennis R. Burton; William R. Schief; Ian A. Wilson
Among broadly neutralizing antibodies to HIV, 10E8 exhibits greater neutralizing breadth than most. Consequently, this antibody is the focus of prophylactic/therapeutic development. The 10E8 epitope has been identified as the conserved membrane proximal external region (MPER) of gp41 subunit of the envelope (Env) viral glycoprotein and is a major vaccine target. However, the MPER is proximal to the viral membrane and may be laterally inserted into the membrane in the Env prefusion form. Nevertheless, 10E8 has not been reported to have significant lipid-binding reactivity. Here we report x-ray structures of lipid complexes with 10E8 and a scaffolded MPER construct and mutagenesis studies that provide evidence that the 10E8 epitope is composed of both MPER and lipid. 10E8 engages lipids through a specific lipid head group interaction site and a basic and polar surface on the light chain. In the model that we constructed, the MPER would then be essentially perpendicular to the virion membrane during 10E8 neutralization of HIV-1. As the viral membrane likely also plays a role in selecting for the germline antibody as well as size and residue composition of MPER antibody complementarity determining regions, the identification of lipid interaction sites and the MPER orientation with regard to the viral membrane surface during 10E8 engagement can be of great utility for immunogen and therapeutic design.
Journal of Clinical Investigation | 2017
Zinaida Polonskaya; Shenglou Deng; Anita Sarkar; Lisa Kain; Marta Comellas-Aragones; Craig S. McKay; Katarzyna Kaczanowska; Marie Holt; Ryan McBride; Valle Palomo; Kevin Self; Seth R. Taylor; Adriana Irimia; Sanjay R. Mehta; Jennifer M. Dan; Matthew T. Brigger; Shane Crotty; Stephen P. Schoenberger; James C. Paulson; Ian A. Wilson; Paul B. Savage; M. G. Finn; Luc Teyton
Vaccines targeting glycan structures at the surface of pathogenic microbes must overcome the inherent T cell–independent nature of immune responses against glycans. Carbohydrate conjugate vaccines achieve this by coupling bacterial polysaccharides to a carrier protein that recruits heterologous CD4 T cells to help B cell maturation. Yet they most often produce low- to medium-affinity immune responses of limited duration in immunologically fit individuals and disappointing results in the elderly and immunocompromised patients. Here, we hypothesized that these limitations result from suboptimal T cell help. To produce the next generation of more efficacious conjugate vaccines, we have explored a synthetic design aimed at focusing both B cell and T cell recognition to a single short glycan displayed at the surface of a virus-like particle. We tested and established the proof of concept of this approach for 2 serotypes of Streptococcus pneumoniae. In both cases, these vaccines elicited serotype-specific, protective, and long-lasting IgG antibodies of nanomolar affinity against the target glycans in mice. We further identified a requirement for CD4 T cells in the anti-glycan antibody response. Our findings establish the design principles for improved glycan conjugate vaccines. We surmise that the same approach can be used for any microbial glycan of interest.
Science Translational Medicine | 2018
Colin Havenar-Daughton; Anita Sarkar; Daniel W. Kulp; Laura Toy; Xiaozhen Hu; Isaiah Deresa; Oleksandr Kalyuzhniy; Kirti Kaushik; Amit A. Upadhyay; Sergey Menis; Elise Landais; Liwei Cao; Jolene K. Diedrich; Sonu Kumar; Torben Schiffner; Samantha M. Reiss; Grégory Seumois; John R. Yates; James C. Paulson; Steven E. Bosinger; Ian A. Wilson; William R. Schief; Shane Crotty
Inspection of the naive B cell repertoire specific for an HIV vaccine immunogen provides actionable information for human vaccine design and advancement. Learning from naive B cells Despite decades of intensive research, HIV vaccines are unable to generate broadly neutralizing antibodies that are likely necessary for protection. One vaccine candidate, eOD-GT8, was designed to bait naive B cells that may be capable of producing antibodies similar to VRC01, a potent CD4-binding site–targeting antibody with breadth. Havenar-Daughton et al. inspected the potential of human naive B cells to recognize eOD-GT8, and isolated B cells that used similar genes as those used to make VRC01. They also observed B cells with immunoglobulin genes similar to those used in other types of broadly neutralizing antibodies, some with a more conventional maturation path than VRC01. Their results suggest that vaccination of humans with eOD-GT8 has the potential to eventually induce CD4-binding site broadly neutralizing antibodies, which would be a major step forward in HIV vaccines. Traditional vaccine development to prevent some of the worst current pandemic diseases has been unsuccessful so far. Germline-targeting immunogens have potential to prime protective antibodies (Abs) via more targeted immune responses. Success of germline-targeting vaccines in humans will depend on the composition of the human naive B cell repertoire, including the frequencies and affinities of epitope-specific B cells. However, the human naive B cell repertoire remains largely undefined. Assessment of antigen-specific human naive B cells among hundreds of millions of B cells from multiple donors may be used as pre–phase 1 ex vivo human testing to potentially forecast B cell and Ab responses to new vaccine designs. VRC01 is an HIV broadly neutralizing Ab (bnAb) against the envelope CD4-binding site (CD4bs). We characterized naive human B cells recognizing eOD-GT8, a germline-targeting HIV-1 vaccine candidate immunogen designed to prime VRC01-class Abs. Several distinct subclasses of VRC01-class naive B cells were identified, sharing sequence characteristics with inferred precursors of known bnAbs VRC01, VRC23, PCIN63, and N6. Multiple naive B cell clones exactly matched mature VRC01-class bnAb L-CDR3 sequences. Non–VRC01-class B cells were also characterized, revealing recurrent public light chain sequences. Unexpectedly, we also identified naive B cells related to the IOMA-class CD4bs bnAb. These different subclasses within the human repertoire had strong initial affinities (KD) to the immunogen, up to 13 nM, and represent encouraging indications that multiple independent pathways may exist for vaccine-elicited VRC01-class bnAb development in most individuals. The frequencies of these distinct eOD-GT8 B cell specificities give insights into antigen-specific compositional features of the human naive B cell repertoire and provide actionable information for vaccine design and advancement.
bioRxiv | 2018
Linling He; Sonu Kumar; Joel J Allen; Deli Huang; Xiaohe Lin; Colin J. Mann; Karen L. Saye-Francisco; Jeffrey Copps; Anita Sarkar; Gabrielle S Blizard; Gabriel Ozorowski; Devin Sok; Max Crispin; Andrew B. Ward; David Nemazee; Dennis R. Burton; Ian A. Wilson; Jiang Zhu
Overcoming envelope metastability is crucial to trimer-based HIV-1 vaccine design. Here, we present a coherent vaccine strategy by minimizing metastability. For ten strains across five clades, we demonstrate that gp41 ectodomain (gp41ECTO) is the main source of envelope metastability by replacing wild-type gp41ECTO with BG505 gp41ECTO of the uncleaved prefusion-optimized (UFO) design. These gp41ECTO-swapped trimers can be produced in CHO cells with high yield and high purity. Crystal structure of a gp41ECTO-swapped trimer elucidates how a neutralization-resistant tier 3 virus evades antibody recognition of the V2 apex. UFO trimers of transmitted/founder (T/F) viruses and UFO trimers containing a consensus-based ancestral gp41ECTO suggest an evolutionary root of the metastability. Gp41ECTO-stabilized trimers can be readily displayed on 24- and 60-meric nanoparticles, with incorporation of additional T cell help illustrated for a hyperstable 60-mer. In mice and rabbits, gp140 nanoparticles induced more effective tier 2 neutralizing antibody response than trimers with statistical significance. HIGHLIGHTS gp41 is the main source of HIV-1 envelope metastability BG505 gp41 of the UFO design stabilizes gp140 trimers of diverse subtypes gp41 stabilization facilitates gp140 nanoparticle assembly and improves production Nanoparticles elicit tier 2 neutralizing antibodies more effectively than trimers
PLOS Pathogens | 2016
Joseph G. Jardine; Devin Sok; Jean-Philippe Julien; Bryan Briney; Anita Sarkar; Chi-Hui Liang; Erin M. Scherer; Carole J. Henry Dunand; Yumiko Adachi; Devan Diwanji; Jessica Hsueh; Meaghan Jones; Oleksandr Kalyuzhniy; Michael Kubitz; Skye Spencer; Matthias Pauthner; Karen L. Saye-Francisco; Fabian Sesterhenn; Patrick C. Wilson; Denise A. Galloway; Robyn L. Stanfield; Ian A. Wilson; Dennis R. Burton; William R. Schief
[This corrects the article DOI: 10.1371/journal.ppat.1005815.].