Anita Schultz
University of Tübingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anita Schultz.
Cell | 2006
Michael Hulko; Franziska Berndt; Markus Gruber; Jürgen U. Linder; Vincent Truffault; Anita Schultz; Jörg Martin; Joachim E. Schultz; Andrei N. Lupas; Murray Coles
HAMP domains connect extracellular sensory with intracellular signaling domains in over 7500 proteins, including histidine kinases, adenylyl cyclases, chemotaxis receptors, and phosphatases. The solution structure of an archaeal HAMP domain shows a homodimeric, four-helical, parallel coiled coil with unusual interhelical packing, related to the canonical packing by rotation of the helices. This suggests a model for the mechanism of signal transduction, in which HAMP alternates between the observed conformation and a canonical coiled coil. We explored this mechanism in vitro and in vivo using HAMP domain fusions with a mycobacterial adenylyl cyclase and an E. coli chemotaxis receptor. Structural and functional studies show that the equilibrium between the two forms is dependent on the side-chain size of residue 291, which is alanine in the wild-type protein.
The EMBO Journal | 2002
Tobias Kanacher; Anita Schultz; Jürgen U. Linder; Joachim E. Schultz
The gene cyaB1 from the cyanobacterium Anabaena sp. PCC 7120 codes for a protein consisting of two N‐terminal GAF domains (GAF‐A and GAF‐B), a PAS domain and a class III adenylyl cyclase catalytic domain. The catalytic domain is active as a homodimer, as demonstrated by reconstitution from complementary inactive point mutants. The specific activity of the holoenyzme increased exponentially with time because the product cAMP activated dose dependently and nucleotide specifically (half‐maximally at 1 μM), identifying cAMP as a novel GAF domain ligand. Using point mutants of either the GAF‐A or GAF‐B domain revealed that cAMP activated via the GAF‐B domain. We replaced the cyanobacterial GAF domain ensemble in cyaB1 with the tandem GAF‐A/GAF‐B assemblage from the rat cGMP‐stimulated phosphodiesterase type 2, and converted cyaB1 to a cGMP‐stimulated adenylyl cyclase. This demonstrated the functional conservation of the GAF domain ensemble since the divergence of bacterial and eukaryotic lineages >2 billion years ago. In cyanobacteria, cyaB1 may act as a cAMP switch to stabilize committed developmental decisions.
Journal of Biological Chemistry | 2006
Marco Gross-Langenhoff; Karina Hofbauer; Jost Weber; Anita Schultz; Joachim E. Schultz
N-terminal tandem GAF domains are present in 5 out of 11 mammalian phosphodiesterase (PDE) families. The ligand for the GAF domains of PDEs 2, 5, and 6 is cGMP, whereas those for PDEs 10 and 11 remained enigmatic for years. Here we used the cyanobacterial cyaB1 adenylyl cyclase, which has an N-terminal tandem GAF domain closely related to those of the mammalian PDEs, as an assay system to identify the ligands for the human PDEs 10 and 11 GAF domains. We report that a chimera between the PDE10 GAF domain and the cyanobacterial cyclase was 9-fold stimulated by cAMP (EC50 = 19.8 μm), whereas cGMP had only low activity. cAMP increased Vmax in a non-cooperative manner and did not affect the Km for ATP of 27 μm. In an analogous chimeric construct with the tandem GAF domain of human PDE11A4, cGMP was identified as an allosteric activator (EC50 = 72.5 μm) that increased Vmax of the cyclase non-cooperatively 4-fold. GAF-B of PDE10 and GAF-A of PDE11A4 contain an invariant NKFDE motif present in all mammalian PDE GAF ensembles. We mutated the aspartates within this motif in both regions and found that intramolecular signaling was considerably reduced or abolished. This was in line with all data concerning GAF domains with an NKFDE motif as far as they have been tested. The data appeared to define those GAF domains as a distinct subclass within the >3100 annotated GAF domains for which we propose a tentative classification scheme.
The EMBO Journal | 1999
Jürgen U. Linder; Peter Engel; Andreas Reimer; Thomas Krüger; Helmut Plattner; Anita Schultz; Joachim E. Schultz
We cloned a guanylyl cyclase of 280 kDa from the ciliate Paramecium which has an N‐terminus similar to that of a P‐type ATPase and a C‐terminus with a topology identical to mammalian adenylyl cyclases. Respective signature sequence motifs are conserved in both domains. The cytosolic catalytic C1a and C2a segments of the cyclase are inverted. Genes coding for topologically identical proteins with substantial sequence similarities have been cloned from Tetrahymena and were detected in sequences from Plasmodium deposited by the Malaria Genome Project. After 99 point mutations to convert the Paramecium TAA/TAG‐Gln triplets to CAA/CAG, together with partial gene synthesis, the gene from Paramecium was heterologously expressed. In Sf9 cells, the holoenzyme is proteolytically processed into the two domains. Immunocytochemistry demonstrates expression of the protein in Paramecium and localizes it to cell surface membranes. The data provide a novel structural link between class III adenylyl and guanylyl cyclases and imply that the protozoan guanylyl cyclases evolved from an ancestral adenylyl cyclase independently of the mammalian guanylyl cyclase isoforms. Further, signal transmission in Ciliophora (Paramecium, Tetrahymena) and in the most important endoparasitic phylum Apicomplexa (Plasmodium) is, quite unexpectedly, closely related.
Cellular Signalling | 2004
Jost Weber; Andrey Vishnyakov; Kristina Hambach; Anita Schultz; Joachim E. Schultz; Jürgen U. Linder
In Paramecium, cAMP formation is stimulated by a potassium conductance, which is an intrinsic property of the adenylyl cyclase. We cloned a full-length cDNA and several gDNA fragments from Paramecium and Tetrahymena coding for adenylyl cyclases with a novel domain composition. A putative N-terminal ion channel domain contains a canonical S4 voltage-sensor and a canonical potassium pore-loop located C-terminally after the last transmembrane span on the cytoplasmic side. The adenylyl cyclase catalyst is C-terminally located. DNA microinjection of a green fluorescent protein (GFP)-tagged construct into the macronucleus of Paramecium resulted in ciliary localization of the expressed protein. An identical gene coding for an ion-channel adenylyl cyclase was cloned from the malaria parasite Plasmodium falciparum. Expression of the catalytic domain of the latter in Sf9 cells yielded an active homodimeric adenylyl cyclase. The occurrence of this highly unique subtype of adenylyl cyclase appears to be restricted to ciliates and apicomplexa.
Journal of Biological Chemistry | 2006
Sandra Bruder; Anita Schultz; Joachim E. Schultz
We analyzed cGMP signaling by the human phosphodiesterase 5 (hPDE5) tandem GAF domain based on a functional activation assay. The C-terminal catalytic domain of the cyanobacterial adenylyl cyclase (AC) cyaB1 was used as a reporter enzyme. We demonstrate functional coupling between the hPDE5 GAF ensemble and the AC resulting in a chimera stimulated 10-fold by cGMP. The hPDE5 GAF domain has an inhibitory effect on AC activity, which is released upon cGMP activation. Removal of 109 amino acids from the N terminus resulted in partial disengagement of the GAF domain and AC, i.e. in a 10-fold increase in basal activity, and affected cGMP affinity. The Ser-102 phosphorylation site of hPDE5 increased cGMP affinity, as shown by a 5-fold lower KD for cGMP in a S102D mutant, which mimicked complete modification. The function of the NKFDE motif, which is a signature of all GAF domains with known cyclic nucleotide binding capacity, was elucidated by targeted mutations. Data with either single and double mutants in either GAF A or GAF B or a quadruple mutant affecting both subdomains simultaneously indicated that it is impossible to functionally assign cGMP binding and intramolecular signaling to either GAF A or B of hPDE5. Both subdomains are structurally and functionally interdependent and act in concert in regulating cycaB1 AC and, most likely, also hPDE5.
Journal of Biological Chemistry | 2012
Laura García Mondéjar; Andrei N. Lupas; Anita Schultz; Joachim E. Schultz
Background: HAMP domains accept signals from membrane receptors and propagate them possibly via rotation. Results: Using targeted mutations based on bioinformatics, sequence comparisons, and structures, we characterize the role of particular amino acids in signaling. Conclusion: Results are compatible with a gearbox model of HAMP rotation. Significance: Various models of HAMP domain-mediated signaling are testable. HAMP domains, ∼55 amino acid motifs first identified in histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, and phosphatases, operate as signal mediators in two-component signal transduction proteins. A bioinformatics study identified a coevolving signal-accepting network of 10 amino acids in membrane-delimited HAMP proteins. To probe the functionality of this network we used a HAMP containing mycobacterial adenylyl cyclase, Rv3645, as a reporter enzyme in which the membrane anchor was substituted by the Escherichia coli chemotaxis receptor for serine (Tsr receptor) and the HAMP domain alternately with that from the protein Af1503 of the archaeon Archaeoglobus fulgidus or the Tsr receptor. In a construct with the Tsr-HAMP, cyclase activity was inhibited by serine, whereas in a construct with the HAMP domain from A. fulgidus, enzyme activity was not responsive to serine. Amino acids of the signal-accepting network were mutually swapped between both HAMP domains, and serine signaling was examined. The data biochemically tentatively established the functionality of the signal-accepting network. Based on a two-state gearbox model of rotation in HAMP domain-mediated signal propagation, we characterized the interaction between permanent and transient core residues in a coiled coil HAMP structure. The data are compatible with HAMP rotation in signal propagation but do not exclude alternative models for HAMP signaling. Finally, we present data indicating that the connector, which links the α-helices of HAMP domains, plays an important structural role in HAMP function.
Journal of Biological Chemistry | 2010
Kajal Kanchan; Juergen Linder; Karin Winkler; Klaus Hantke; Anita Schultz; Joachim E. Schultz
The Escherichia coli chemoreceptors for serine (Tsr) and aspartate (Tar) and several bacterial class III adenylyl cyclases (ACs) share a common molecular architecture; that is, a membrane anchor that is linked via a cytoplasmic HAMP domain to a C-terminal signal output unit. Functionality of both proteins requires homodimerization. The chemotaxis receptors are well characterized, whereas the typical hexahelical membrane anchor (6TM) of class III ACs, suggested to operate as a channel or transporter, has no known function beyond a membrane anchor. We joined the intramolecular networks of Tsr or Tar and two bacterial ACs, Rv3645 from Mycobacterium tuberculosis and CyaG from Arthrospira platensis, across their signal transmission sites, connecting the chemotaxis receptors via different HAMP domains to the catalytic AC domains. AC activity in the chimeras was inhibited by micromolar concentrations of l-serine or l-aspartate in vitro and in vivo. Single point mutations known to abolish ligand binding in Tar (R69E or T154I) or Tsr (R69E or T156K) abrogated AC regulation. Co-expression of mutant pairs, which functionally complement each other, restored regulation in vitro and in vivo. Taken together, these studies demonstrate chemotaxis receptor-mediated regulation of chimeric bacterial ACs and connect chemical sensing and AC regulation.
Journal of Biological Chemistry | 2012
Karin Winkler; Anita Schultz; Joachim E. Schultz
Background: A signaling or S-helix often connects upstream receiver and downstream output domains. Results: Characterization of the S-helix in an adenylyl cyclase from Arthrospira maxima demonstrates an autonomous role of the S-helix in sensory signaling. Conclusion: The S-helix determines the cytoplasmic signal. Significance: The ubiquitous S-helix is a distinct module involved in signal transduction. A signaling or S-helix has been identified as a conserved, up to 50-residue-long segment in diverse sensory proteins (1). It is present in all major bacterial lineages and in euryarchea and eukaryotes (1). A bioinformatic analysis shows that it connects upstream receiver and downstream output domains, e.g. in histidine kinases and bacterial adenylyl cyclases. The S-helix is modeled as a two-helical parallel coiled coil. It is predicted to prevent constitutive activation of the downstream signaling domains in the absence of ligand-binding (1). We identified an S-helix of about 25 residues in the adenylyl cyclase CyaG from Arthrospira maxima. Deletion of the 25 residue segment connecting the HAMP and catalytic domains in a chimera with the Escherichia coli Tsr receptor changed the response to serine from inhibition to stimulation. Further examination showed that a deletion of one to three heptads plus a presumed stutter, i.e. 1, 2, or 3 × 7 + 4 amino acids, is required and sufficient for signal reversion. It was not necessary that the deletions be continuous, as removal of separated heptads and presumed stutters also resulted in signal reversion. Furthermore, insertion of the above segments between the HAMP and cyclase catalytic domains similarly resulted in signal reversion. This indicates that the S-helix is an independent, segmented module capable to reverse the receptor signal. Because the S-helix is present in all kingdoms of life, e.g. in human retinal guanylyl cyclase, our findings may be significant for many sensory systems.
Journal of Biological Chemistry | 2008
Karina Hofbauer; Anita Schultz; Joachim E. Schultz
The tandem GAF domain of hPDE10A uses cAMP as an allosteric ligand (Gross-Langenhoff, M., Hofbauer, K., Weber, J., Schultz, A., and Schultz, J. E. (2006) J. Biol. Chem. 281, 2841–2846). We used a two-pronged approach to study how discrimination of ligand is achieved in human (h)PDE10A and how domain selection in the phosphodiesterase GAF tandems is determined. First, we examined which functional groups of cAMP are responsible for purine ring discrimination. Changes at the C-6 ring position (removal of the amino group; chloride substitution) and at the N-1 ring position reduced stimulation efficacy by 80%, i.e. marking those positions as decisive for nucleotide discrimination. Second, we generated a GAF tandem chimera that consisted of the cGMP-binding GAF-A unit from hPDE5A1, which signals through cGMP in PDE5, and the GAF-B from hPDE10A1, which signals through cAMP in PDE10. Stimulation of the reporter enzyme exclusively was through the GAF-B domain of hPDE10A1 (EC50 = 7 μm cAMP) as shown by respective point mutations. The PDE5 GAF-A domain in the chimera did not signal, and its function was reduced to a strictly structural role. Signaling was independent of the origin of the N terminus. Generating 10 additional PDE5/10 tandem GAF chimeras surprisingly demonstrated that the length-conserved linker in GAF tandems between GAF-A and GAF-B played an unforeseen decisive role in intramolecular signaling. Swapping the linker sections between PDE5 and PDE10 GAF tandem domains abrogated signaling completely pointing to specific domain interactions within GAF tandems, which are not visible in the available crystal structures with bound ligands.