Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anita Sveen is active.

Publication


Featured researches published by Anita Sveen.


Gut | 2012

ColoGuideEx: a robust gene classifier specific for stage II colorectal cancer prognosis

Trude H. Ågesen; Anita Sveen; Marianne A. Merok; Guro E. Lind; Arild Nesbakken; Rolf I. Skotheim; Ragnhild A. Lothe

Background and aims Several clinical factors have an impact on prognosis in stage II colorectal cancer (CRC), but as yet they are inadequate for risk assessment. The present study aimed to develop a gene expression classifier for improved risk stratification of patients with stage II CRC. Methods 315 CRC samples were included in the study. Gene expression measurements from 207 CRC samples (stage I–IV) from two independent Norwegian clinical series were obtained using Affymetrix exon-level microarrays. Differentially expressed genes between stage I and stage IV samples from the test series were identified and used as input for L1 (lasso) penalised Cox proportional hazards analyses of patients with stage II CRC from the same series. A second validation was performed in 108 stage II CRC samples from other populations (USA and Australia). Results An optimal 13-gene expression classifier (PIGR, CXCL13, MMP3, TUBA1B, SESN1, AZGP1, KLK6, EPHA7, SEMA3A, DSC3, CXCL10, ENPP3, BNIP3) for prediction of relapse among patients with stage II CRC was developed using a consecutive Norwegian test series from patients treated according to current standard protocols (n=44, p<0.001, HR=18.2), and its predictive value was successfully validated for patients with stage II CRC in a second Norwegian CRC series collected two decades previously (n=52, p=0.02, HR=3.6). Further validation of the classifier was obtained in a recent external dataset of patients with stage II CRC from other populations (n=108, p=0.001, HR=6.5). Multivariate Cox regression analyses, including all three sample series and various clinicopathological variables, confirmed the independent prognostic value of the classifier (p≤0.004). The classifier was shown to be specific to stage II CRC and does not provide prognostic stratification of patients with stage III CRC. Conclusion This study presents the development and validation of a 13-gene expression classifier, ColoGuideEx, for prognosis prediction specific to patients with stage II CRC. The robustness was shown across patient series, populations and different microarray versions.


Oncogene | 2016

Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes

Anita Sveen; Sami Kilpinen; A Ruusulehto; Ragnhild A. Lothe; Rolf I. Skotheim

Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations.


Clinical Cancer Research | 2012

ColoGuidePro: A Prognostic 7-Gene Expression Signature for Stage III Colorectal Cancer Patients

Anita Sveen; Trude H. Ågesen; Arild Nesbakken; Gunn Iren Meling; Torleiv O. Rognum; Knut Liestøl; Rolf I. Skotheim; Ragnhild A. Lothe

Purpose: Improved prognostic stratification of patients with stage II and III colorectal cancer is warranted for postoperative clinical decision making. This study was conducted to develop a clinically feasible and robust prognostic classifier for these patients independent of adjuvant treatment. Experimental Design: Global gene expression profiles from altogether 387 stage II and III colorectal cancer tissue samples from three independent patient series were included in the study. ColoGuidePro, a seven-gene prognostic classifier, was developed from a selected Norwegian learning series (n = 95; no adjuvant treatment) using lasso-penalized multivariate survival modeling with cross-validation. Results: The expression signature significantly stratified patients in a consecutive Norwegian test series, in which patients were treated according to current standards [HR, 2.9 (1.1–7.5); P = 0.03; n = 77] and an external validation series [HR, 3.7 (2.0–6.8); P < 0.001; n = 215] according to survival. ColoGuidePro was also an independent predictor of prognosis in multivariate models including tumor stage in both series (HR, ≥3.1; P ≤ 0.03). In the validation series, which consisted of patients from other populations (United States and Australia), 5-year relapse-free survival was significantly predicted for stage III patients only (P < 0.001; n = 107). Here, prognostic stratification was independent of adjuvant treatment (P = 0.001). Conclusions: We present ColoGuidePro, a prognostic classifier developed for patients with stage II and III colorectal cancer. The test is suitable for transfer to clinical use and has best prognostic prediction potential for stage III patients. Clin Cancer Res; 18(21); 6001–10. ©2012 AACR.


Genome Medicine | 2011

Transcriptome instability in colorectal cancer identified by exon microarray analyses: Associations with splicing factor expression levels and patient survival

Anita Sveen; Trude H. Ågesen; Arild Nesbakken; Torleiv O. Rognum; Ragnhild A. Lothe; Rolf I. Skotheim

BackgroundColorectal cancer (CRC) is a heterogeneous disease that, on the molecular level, can be characterized by inherent genomic instabilities; chromosome instability and microsatellite instability. In the present study we analyze genome-wide disruption of pre-mRNA splicing, and propose transcriptome instability as a characteristic that is analogous to genomic instability on the transcriptome level.MethodsExon microarray profiles from two independent series including a total of 160 CRCs were investigated for their relative amounts of exon usage differences. Each exon in each sample was assigned an alternative splicing score calculated by the FIRMA algorithm. Amounts of deviating exon usage per sample were derived from exons with extreme splicing scores.ResultsThere was great heterogeneity within both series in terms of sample-wise amounts of deviating exon usage. This was strongly associated with the expression levels of approximately half of 280 splicing factors (54% and 48% of splicing factors were significantly correlated to deviating exon usage amounts in the two series). Samples with high or low amounts of deviating exon usage, associated with overall transcriptome instability, were almost completely separated into their respective groups by hierarchical clustering analysis of splicing factor expression levels in both sample series. Samples showing a preferential tendency towards deviating exon skipping or inclusion were associated with skewed transcriptome instability. There were significant associations between transcriptome instability and reduced patient survival in both sample series. In the test series, patients with skewed transcriptome instability showed the strongest prognostic association (P = 0.001), while a combination of the two characteristics showed the strongest association with poor survival in the validation series (P = 0.03).ConclusionsWe have described transcriptome instability as a characteristic of CRC. This transcriptome instability has associations with splicing factor expression levels and poor patient survival.


The Lancet Gastroenterology & Hepatology | 2016

Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study

Enric Domingo; Luke Freeman-Mills; Emily Rayner; Mark A. Glaire; Sarah Briggs; Louis Vermeulen; Evelyn Fessler; Jan Paul Medema; Arnoud Boot; Hans Morreau; Tom van Wezel; Gerrit Jan Liefers; Ragnhild A. Lothe; Stine A. Danielsen; Anita Sveen; Arild Nesbakken; Inti Zlobec; Alessandro Lugli; Viktor H. Koelzer; Martin D. Berger; Sergi Castellví-Bel; Jenifer Muñoz; Marco de Bruyn; Hans W. Nijman; Marco Novelli; Kay Lawson; Dahmane Oukrif; Eleni Frangou; Peter Dutton; Sabine Tejpar

BACKGROUND Precision cancer medicine depends on defining distinct tumour subgroups using biomarkers that may occur at very modest frequencies. One such subgroup comprises patients with exceptionally mutated (ultramutated) cancers caused by mutations that impair DNA polymerase epsilon (POLE) proofreading. METHODS We examined the association of POLE proofreading domain mutation with clinicopathological variables and immune response in colorectal cancers from clinical trials (VICTOR, QUASAR2, and PETACC-3) and colorectal cancer cohorts (Leiden University Medical Centre 1 and 2, Oslo 1 and 2, Bern, AMC-AJCC-II, and Epicolon-1). We subsequently investigated its association with prognosis in stage II/III colorectal cancer by Cox regression of pooled individual patient data from more than 4500 cases from these studies. FINDINGS Pathogenic somatic POLE mutations were detected in 66 (1·0%) of 6517 colorectal cancers, and were mutually exclusive with mismatch repair deficiency (MMR-D) in the 6277 cases for whom both markers were determined (none of 66 vs 833 [13·4%] of 6211; p<0·0001). Compared with cases with wild-type POLE, cases with POLE mutations were younger at diagnosis (median 54·5 years vs 67·2 years; p<0·0001), were more frequently male (50 [75·8%] of 66 vs 3577 [55·5%] of 6445; p=0·0010), more frequently had right-sided tumour location (44 [68·8%] of 64 vs 2463 [39·8%] of 6193; p<0·0001), and were diagnosed at an earlier disease stage (p=0·006, χ2 test for trend). Compared with mismatch repair proficient (MMR-P) POLE wild-type tumours, POLE-mutant colorectal cancers displayed increased CD8+ lymphocyte infiltration and expression of cytotoxic T-cell markers and effector cytokines, similar in extent to that observed in immunogenic MMR-D cancers. Both POLE mutation and MMR-D were associated with significantly reduced risk of recurrence compared with MMR-P colorectal cancers in multivariable analysis (HR 0·34 [95% CI 0·11-0·76]; p=0·0060 and 0·72 [0·60-0·87]; p=0·00035), although the difference between the groups was not significant. INTERPRETATION POLE proofreading domain mutations identify a subset of immunogenic colorectal cancers with excellent prognosis. This association underscores the importance of rare biomarkers in precision cancer medicine, but also raises important questions about how to identify and implement them in practice. FUNDING Cancer Research UK, Academy of Medical Sciences, Health Foundation, EU, ERC, NIHR, Wellcome Trust, Dutch Cancer Society, Dutch Digestive Foundation.


PLOS ONE | 2011

Phospholipase C Isozymes Are Deregulated in Colorectal Cancer – Insights Gained from Gene Set Enrichment Analysis of the Transcriptome

Stine A. Danielsen; Lina Cekaite; Trude H. Ågesen; Anita Sveen; Arild Nesbakken; Espen Thiis-Evensen; Rolf I. Skotheim; Guro E. Lind; Ragnhild A. Lothe

Colorectal cancer (CRC) is one of the most common cancer types in developed countries. To identify molecular networks and biological processes that are deregulated in CRC compared to normal colonic mucosa, we applied Gene Set Enrichment Analysis to two independent transcriptome datasets, including a total of 137 CRC and ten normal colonic mucosa samples. Eighty-two gene sets as described by the Kyoto Encyclopedia of Genes and Genomes database had significantly altered gene expression in both datasets. These included networks associated with cell division, DNA maintenance, and metabolism. Among signaling pathways with known changes in key genes, the “Phosphatidylinositol signaling network”, comprising part of the PI3K pathway, was found deregulated. The downregulated genes in this pathway included several members of the Phospholipase C protein family, and the reduced expression of two of these, PLCD1 and PLCE1, were successfully validated in CRC biopsies (n = 70) and cell lines (n = 19) by quantitative analyses. The repression of both genes was found associated with KRAS mutations (P = 0.005 and 0.006, respectively), and we observed that microsatellite stable carcinomas with reduced PLCD1 expression more frequently had TP53 mutations (P = 0.002). Promoter methylation analyses of PLCD1 and PLCE1 performed in cell lines and tumor biopsies revealed that methylation of PLCD1 can contribute to reduced expression in 40% of the microsatellite instable carcinomas. In conclusion, we have identified significantly deregulated pathways in CRC, and validated repression of PLCD1 and PLCE1 expression. This illustrates that the GSEA approach may guide discovery of novel biomarkers in cancer.


Clinical Cancer Research | 2013

Anticipating the clinical use of prognostic gene expression-based tests for colon cancer stage II and III: Is godot finally arriving?

Anita Sveen; Arild Nesbakken; Trude H. Ågesen; Marianne Grønlie Guren; Kjell Magne Tveit; Rolf I. Skotheim; Ragnhild A. Lothe

Purpose: According to current recommendations for adjuvant treatment, patients with colon cancer stage II are not routinely offered chemotherapy, unless considered to have a high risk of relapse based on specific clinicopathological parameters. Following these criteria, it is challenging to identify the subgroup of patients that will benefit the most from adjuvant treatment. Contrarily, patients with colon cancer stage III are routinely offered chemotherapy, but due to expected adverse effects and frailty, elderly patients are often excluded from standard protocols. Colon cancer is a disease of the elderly and accordingly, there is a large subgroup of patients for which guidelines for adjuvant treatment remain less clear. In these two clinical settings, improved risk stratification has great potential impact on patient care, anticipating that high-risk patients will benefit from chemotherapy. However, microsatellite instability is the only molecular prognostic marker recommended for clinical use. Experimental Design: In this perspective, we provide an updated view on the status and clinical potential of the many proposed prognostic gene expression–based tests for colon cancer stage II and III. Results: The main limitation for clinical implementation is lack of prospective validation. For patients with stage II, highly promising tests have been identified and clinical trials are ongoing. For elderly patients with stage III, the value of such tests has received less focus, but promising early results have been shown. Conclusion: Although awaiting results from prospective trials, improved risk assessment for patients with stage II and III is likely to be achieved in the foreseeable future. Clin Cancer Res; 19(24); 6669–77. ©2013 AACR.


PLOS Genetics | 2016

Intra-patient Inter-metastatic Genetic Heterogeneity in Colorectal Cancer as a Key Determinant of Survival after Curative Liver Resection.

Anita Sveen; Inger Marie Løes; Sharmini Alagaratnam; Gro Nilsen; Maren Høland; Ole Christian Lingjærde; Halfdan Sorbye; Kaja C. G. Berg; Arild Horn; Jon-Helge Angelsen; Stian Knappskog; Per Eystein Lønning; Ragnhild A. Lothe

Chromosomal instability is a well-defined hallmark of tumor aggressiveness and metastatic progression in colorectal cancer. The magnitude of genetic heterogeneity among distinct liver metastases from the same patient at the copy number level, as well as its relationship with chemotherapy exposure and patient outcome, remains unknown. We performed high-resolution DNA copy number analyses of 134 liver metastatic deposits from 45 colorectal cancer patients to assess: (i) intra-patient inter-metastatic genetic heterogeneity using a heterogeneity score based on pair-wise genetic distances among tumor deposits; and (ii) genomic complexity, defined as the proportion of the genome harboring aberrant DNA copy numbers. Results were analyzed in relation to the patients’ clinical course; previous chemotherapy exposure and outcome after surgical resection of liver metastases. We observed substantial variation in the level of intra-patient inter-metastatic heterogeneity. Heterogeneity was not associated with the number of metastatic lesions or their genomic complexity. In metachronous disease, heterogeneity was higher in patients previously exposed to chemotherapy. Importantly, intra-patient inter-metastatic heterogeneity was a strong prognostic determinant, stronger than known clinicopathological prognostic parameters. Patients with a low level of heterogeneity (below the median level) had a three-year progression-free and overall survival rate of 23% and 66% respectively, versus 5% and 18% for patients with a high level (hazard ratio0.4, 95% confidence interval 0.2–0.8, P = 0.01; and hazard ratio0.3,95% confidence interval 0.1–0.7, P = 0.007). A low patient-wise level of genomic complexity (below 25%) was also a favorable prognostic factor; however, the prognostic association of intra-patient heterogeneity was independent of genomic complexity in multivariable analyses. In conclusion, intra-patient inter-metastatic genetic heterogeneity is a pronounced feature of metastatic colorectal cancer, and the strong prognostic association reinforces its clinical relevance and places it as a key feature to be explored in future patient cohorts.


Annals of Oncology | 2017

Prediction of overall survival in stage II and III colon cancer beyond TNM system: a retrospective, pooled biomarker study

Rodrigo Dienstmann; M. J. Mason; Frank A. Sinicrope; Amanda I. Phipps; Sabine Tejpar; Arild Nesbakken; Stine A. Danielsen; Anita Sveen; Daniel D. Buchanan; Mark Clendenning; Christophe Rosty; Brian M. Bot; Steven R. Alberts; J. Milburn Jessup; Ragnhild A. Lothe; Mauro Delorenzi; Polly A. Newcomb; Daniel J. Sargent; Justin Guinney

Background TNM staging alone does not accurately predict outcome in colon cancer (CC) patients who may be eligible for adjuvant chemotherapy. It is unknown to what extent the molecular markers microsatellite instability (MSI) and mutations in BRAF or KRAS improve prognostic estimation in multivariable models that include detailed clinicopathological annotation. Patients and methods After imputation of missing at random data, a subset of patients accrued in phase 3 trials with adjuvant chemotherapy (n=3016)—N0147 (NCT00079274) and PETACC3 (NCT00026273)—was aggregated to construct multivariable Cox models for 5-year overall survival that were subsequently validated internally in the remaining clinical trial samples (n=1499), and also externally in different population cohorts of chemotherapy-treated (n=949) or -untreated (n=1080) CC patients, and an additional series without treatment annotation (n=782). Results TNM staging, MSI and BRAFV600E mutation status remained independent prognostic factors in multivariable models across clinical trials cohorts and observational studies. Concordance indices increased from 0.61–0.68 in the TNM alone model to 0.63–0.71 in models with added molecular markers, 0.65–0.73 with clinicopathological features and 0.66–0.74 with all covariates. In validation cohorts with complete annotation, the integrated time-dependent AUC rose from 0.64 for the TNM alone model to 0.67 for models that included clinicopathological features, with or without molecular markers. In patient cohorts that received adjuvant chemotherapy, the relative proportion of variance explained (R2) by TNM, clinicopathological features and molecular markers was on an average 65%, 25% and 10%, respectively. Conclusions Incorporation of MSI, BRAFV600E and KRAS mutation status to overall survival models with TNM staging improves the ability to precisely prognosticate in stage II and III CC patients, but only modestly increases prediction accuracy in multivariable models that include clinicopathological features, particularly in chemotherapy-treated patients.Background TNM staging alone does not accurately predict outcome in colon cancer (CC) patients who may be eligible for adjuvant chemotherapy. It is unknown to what extent the molecular markers microsatellite instability (MSI) and mutations in BRAF or KRAS improve prognostic estimation in multivariable models that include detailed clinicopathological annotation. Patients and methods After imputation of missing at random data, a subset of patients accrued in phase 3 trials with adjuvant chemotherapy (n = 3016)—N0147 (NCT00079274) and PETACC3 (NCT00026273)—was aggregated to construct multivariable Cox models for 5-year overall survival that were subsequently validated internally in the remaining clinical trial samples (n = 1499), and also externally in different population cohorts of chemotherapy-treated (n = 949) or -untreated (n = 1080) CC patients, and an additional series without treatment annotation (n = 782). Results TNM staging, MSI and BRAFV600E mutation status remained independent prognostic factors in multivariable models across clinical trials cohorts and observational studies. Concordance indices increased from 0.61–0.68 in the TNM alone model to 0.63–0.71 in models with added molecular markers, 0.65–0.73 with clinicopathological features and 0.66–0.74 with all covariates. In validation cohorts with complete annotation, the integrated time-dependent AUC rose from 0.64 for the TNM alone model to 0.67 for models that included clinicopathological features, with or without molecular markers. In patient cohorts that received adjuvant chemotherapy, the relative proportion of variance explained (R2) by TNM, clinicopathological features and molecular markers was on an average 65%, 25% and 10%, respectively. Conclusions Incorporation of MSI, BRAFV600E and KRAS mutation status to overall survival models with TNM staging improves the ability to precisely prognosticate in stage II and III CC patients, but only modestly increases prediction accuracy in multivariable models that include clinicopathological features, particularly in chemotherapy-treated patients.


Biochemical Journal | 2014

PIKfyve, MTMR3 and their product PtdIns5P regulate cancer cell migration and invasion through activation of Rac1

Angela Oppelt; Ellen Margrethe Haugsten; Tobias Zech; Håvard E. Danielsen; Anita Sveen; Viola Hélène Lobert; Rolf I. Skotheim; Jørgen Wesche

Previously, we have shown that the phosphoinositide metabolizing enzymes PIKfyve (phosphoinositide 5-kinase, FYVE finger containing) and MTMR3 (myotubularin-related protein 3), together with their lipid product PtdIns5P, are important for migration of normal human fibroblasts. As these proteins are a kinase and a phosphatase respectively, and thereby considered druggable, we wanted to test their involvement in cancer cell migration and invasion. First, we showed that PIKfyve and MTMR3 are expressed in most cancer cells. Next, we demonstrated that depletion of PIKfyve or MTMR3 resulted in decreased velocity in three different cancer cell lines by using new software for cell tracking. Inhibition of the enzymatic activity of PIKfyve by the inhibitor YM201636 also led to a strong reduction in cell velocity. Mechanistically, we show that PIKfyve and MTMR3 regulate the activation of the Rho family GTPase Rac1. Further experiments also implicated PtdIns5P in the activation of Rac1. The results suggest a model for the activation of Rac1 in cell migration where PIKfyve and MTMR3 produce PtdIns5P on cellular membranes which may then serve to recruit effectors to activate Rac1. Finally, in an invasion assay, we demonstrate that both PIKfyve and MTMR3 are implicated in invasive behaviour of cancer cells. Thus PIKfyve and MTMR3 could represent novel therapeutic targets in metastatic cancer.

Collaboration


Dive into the Anita Sveen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guro E. Lind

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge