Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anita Terse is active.

Publication


Featured researches published by Anita Terse.


Matrix Biology | 2009

Dentin sialoprotein and dentin phosphoprotein have distinct roles in dentin mineralization.

Shigeki Suzuki; Taduru Sreenath; Naoto Haruyama; Cherlita Honeycutt; Anita Terse; Andrew Cho; Thomas Kohler; Ralph Müller; Michel E. Goldberg; Ashok B. Kulkarni

Dentin sialophosphoprotein (DSPP), a major non-collagenous matrix protein of odontoblasts, is proteolytically cleaved into dentin sialoprotein (DSP) and dentin phosphoprotein (DPP). Our previous studies revealed that DSPP null mice display a phenotype similar to human autosomal dominant dentinogenesis imperfecta, in which teeth have widened predentin and irregular dentin mineralization resulting in sporadic unmineralized areas in dentin and frequent pulp exposure. Earlier in vitro studies suggested that DPP, but not DSP, plays a significant role in initiation and maturation of dentin mineralization. However, the precise in vivo roles of DSP and DPP are far from clear. Here we report the generation of DPPcKO mice, in which only DSP is expressed in a DSPP null background, resulting in a conditional DPP knockout. DPPcKO teeth show a partial rescue of the DSPP null phenotype with the restored predentin width, an absence of irregular unmineralized areas in dentin, and less frequent pulp exposure. Micro-computed tomography (micro-CT) analysis of DPPcKO molars further confirmed this partial rescue with a significant recovery in the dentin volume, but not in the dentin mineral density. These results indicate distinct roles of DSP and DPP in dentin mineralization, with DSP regulating initiation of dentin mineralization, and DPP being involved in the maturation of mineralized dentin.


Cancer Research | 2009

Progressive Tumor Formation in Mice with Conditional Deletion of TGF-β Signaling in Head and Neck Epithelia Is Associated with Activation of the PI3k/Akt Pathway

Yansong Bian; Anita Terse; Juan Du; Bradford Hall; Alfredo A. Molinolo; Pin Zhang; WanJun Chen; Kathleen C. Flanders; J. Silvio Gutkind; Lalage M. Wakefield; Ashok B. Kulkarni

The precise role of transforming growth factor (TGF)-beta signaling in head and neck squamous cell carcinoma (SCC) is not yet fully understood. Here, we report generation of an inducible head- and neck-specific knockout mouse model by crossing TGF-beta receptor I (Tgfbr1) floxed mice with K14-CreER(tam) mice. By applying tamoxifen to oral cavity of the mouse to induce Cre expression, we were able to conditionally delete Tgfbr1 in the mouse head and neck epithelia. On tumor induction with 7,12-dimethylbenz(a)anthracene (DMBA), 45% of Tgfbr1 conditional knockout (cKO) mice (n = 42) developed SCCs in the head and neck area starting from 16 weeks after treatment. However, no tumors were observed in the control littermates. A molecular analysis revealed an enhanced proliferation and loss of apoptosis in the basal layer of the head and neck epithelia of Tgfbr1 cKO mice 4 weeks after tamoxifen and DMBA treatment. The most notable finding of our study is that the phosphoinositide 3-kinase (PI3K)/Akt pathway was activated in SCCs that developed in the Tgfbr1 cKO mice on inactivation of TGF-beta signaling through Smad2/3 and DMBA treatment. These observations suggest that activation of Smad-independent pathways may contribute cooperatively with inactivation of Smad-dependent pathways to promote head and neck carcinogenesis in these mice. Our results revealed the critical role of the TGF-beta signaling pathway and its cross-talk with the PI3K/Akt pathway in suppressing head and neck carcinogenesis.


Molecular Pain | 2011

Resveratrol inhibits Cdk5 activity through regulation of p35 expression

Elias Utreras; Anita Terse; Jason Keller; Michael J. Iadarola; Ashok B. Kulkarni

BackgroundWe have previously reported that cyclin-dependent kinase 5 (Cdk5) participates in the regulation of nociceptive signaling. Through activation of the ERK1/2 pathway, Tumor Necrosis Factor-α (TNF-α) induces expression of Egr-1. This results in the sustained and robust expression of p35, a coactivator of Cdk5, in PC12 cells, thereby increasing Cdk5 kinase activity. The aim of our present study was to test whether resveratrol, a polyphenolic compound with known analgesic activity, can regulate Cdk5/p35 activity.ResultsHere we used a cell-based assay in which a p35 promoter-luciferase construct was stably transfected in PC12 cells. Our studies demonstrate that resveratrol inhibits p35 promoter activity and also blocks the TNF-α mediated increase in Cdk5 activity in PC12 cells. Resveratrol also inhibits p35 expression and blocks the TNF-α mediated increase in Cdk5 activity in DRG neurons. In the presence of resveratrol, the MEK inhibitor decreased p35 promoter activity, whereas the inhibitors of p38 MAPK, JNK and NF-κB increased p35 promoter activity, indicating that these pathways regulate p35 expression differently. The TNF-α-mediated increase in Egr-1 expression was decreased by resveratrol treatment with a concomitant reduction in p35 expression and protein levels, resulting in reduced Cdk5 kinase activity.ConclusionsWe demonstrate here that resveratrol regulates p35 promoter activity in PC12 cells and DRG neurons. Most importantly, resveratrol blocks the TNF-α-mediated increase in p35 promoter activity, thereby reducing p35 expression and subsequent Cdk5 kinase activity. This new molecular mechanism adds to the known analgesic effects of resveratrol and confirms the need for identifying new analgesics based on their ability to inhibit Cdk5 activity for effective treatment of pain.


PLOS ONE | 2014

Searching for novel Cdk5 substrates in brain by comparative phosphoproteomics of wild type and Cdk5-/- mice.

Erick Contreras-Vallejos; Elias Utreras; Daniel A. Bórquez; Michaela Prochazkova; Anita Terse; Howard Jaffe; Andrea Toledo; Cristina Arruti; Harish C. Pant; Ashok B. Kulkarni; Christian González-Billault

Protein phosphorylation is the most common post-translational modification that regulates several pivotal functions in cells. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase which is mostly active in the nervous system. It regulates several biological processes such as neuronal migration, cytoskeletal dynamics, axonal guidance and synaptic plasticity among others. In search for novel substrates of Cdk5 in the brain we performed quantitative phosphoproteomics analysis, isolating phosphoproteins from whole brain derived from E18.5 Cdk5+/+ and Cdk5−/− embryos, using an Immobilized Metal-Ion Affinity Chromatography (IMAC), which specifically binds to phosphorylated proteins. The isolated phosphoproteins were eluted and isotopically labeled for relative and absolute quantitation (iTRAQ) and mass spectrometry identification. We found 40 proteins that showed decreased phosphorylation at Cdk5−/− brains. In addition, out of these 40 hypophosphorylated proteins we characterized two proteins, :MARCKS (Myristoylated Alanine-Rich protein Kinase C substrate) and Grin1 (G protein regulated inducer of neurite outgrowth 1). MARCKS is known to be phosphorylated by Cdk5 in chick neural cells while Grin1 has not been reported to be phosphorylated by Cdk5. When these proteins were overexpressed in N2A neuroblastoma cell line along with p35, serine phosphorylation in their Cdk5 motifs was found to be increased. In contrast, treatments with roscovitine, the Cdk5 inhibitor, resulted in an opposite effect on serine phosphorylation in N2A cells and primary hippocampal neurons transfected with MARCKS. In summary, the results presented here identify Grin 1 as novel Cdk5 substrate and confirm previously identified MARCKS as a a bona fide Cdk5 substrate.


Molecular Pain | 2013

TGF-β1 sensitizes TRPV1 through Cdk5 signaling in odontoblast-like cells.

Elias Utreras; Michaela Prochazkova; Anita Terse; Jacklyn R. Gross; Jason Keller; Michael J. Iadarola; Ashok B. Kulkarni

BackgroundOdontoblasts are specialized cells that form dentin and they are believed to be sensors for tooth pain. Transforming growth factor-β1 (TGF-β1), a pro-inflammatory cytokine expressed early in odontoblasts, plays an important role in the immune response during tooth inflammation and infection. TGF-β1 is also known to participate in pain signaling by regulating cyclin-dependent kinase 5 (Cdk5) in nociceptive neurons of the trigeminal and dorsal root ganglia. However, the precise role of TGF-β1 in tooth pain signaling is not well characterized. The aim of our present study was to determine whether or not in odontoblasts Cdk5 is functionally active, if it is regulated by TGF-β1, and if it affects the downstream pain receptor, transient receptor potential vanilloid-1 (TRPV1).ResultsWe first determined that Cdk5 and p35 are indeed expressed in an odontoblast-enriched primary preparation from murine teeth. For the subsequent analysis, we used an odontoblast-like cell line (MDPC-23) and found that Cdk5 is functionally active in these cells and its kinase activity is upregulated during cell differentiation. We found that TGF-β1 treatment potentiated Cdk5 kinase activity in undifferentiated MDPC-23 cells. SB431542, a specific inhibitor of TGF-β1 receptor 1 (Tgfbr1), when co-administered with TGF-β1, blocked the induction of Cdk5 activity. TGF-β1 treatment also activated the ERK1/2 signaling pathway, causing an increase in early growth response-1 (Egr-1), a transcription factor that induces p35 expression. In MDPC-23 cells transfected with TRPV1, Cdk5-mediated phosphorylation of TRPV1 at threonine-407 was significantly increased after TGF-β1 treatment. In contrast, SB431542 co-treatment blocked TRPV1 phosphorylation. Moreover, TGF-β1 treatment enhanced both proton- and capsaicin-induced Ca2+ influx in TRPV1-expressing MDPC-23 cells, while co-treatment with either SB431542 or roscovitine blocked this effect.ConclusionsCdk5 and p35 are expressed in a murine odontoblast-enriched primary preparation of cells from teeth. Cdk5 is also functionally active in odontoblast-like MDPC-23 cells. TGF-β1 sensitizes TRPV1 through Cdk5 signaling in MDPC-23 cells, suggesting the direct involvement of odontoblasts and Cdk5 in dental nociceptive pain transduction.


Molecular Pain | 2013

Activation of cyclin-dependent kinase 5 mediates orofacial mechanical hyperalgesia

Michaela Prochazkova; Anita Terse; Niranjana D. Amin; Bradford Hall; Elias Utreras; Harish C. Pant; Ashok B. Kulkarni

BackgroundCyclin-dependent kinase 5 (Cdk5) is a unique member of the serine/threonine kinase family. This kinase plays an important role in neuronal development, and deregulation of its activity leads to neurodegenerative disorders. Cdk5 also serves an important function in the regulation of nociceptive signaling. Our previous studies revealed that the expression of Cdk5 and its activator, p35, is upregulated in nociceptive neurons during peripheral inflammation. The aim of the present study was to characterize the involvement of Cdk5 in orofacial pain. Since mechanical hyperalgesia is the distinctive sign of many orofacial pain conditions, we adapted an existing orofacial stimulation test to assess the behavioral responses to mechanical stimulation in the trigeminal region of the transgenic mice with either reduced or increased Cdk5 activity.ResultsMice overexpressing or lacking p35, an activator of Cdk5, showed altered phenotype in response to noxious mechanical stimulation in the trigeminal area. Mice with increased Cdk5 activity displayed aversive behavior to mechanical stimulation as indicated by a significant decrease in reward licking events and licking time. The number of reward licking/facial contact events was significantly decreased in these mice as the mechanical intensity increased. By contrast, mice deficient in Cdk5 activity displayed mechanical hypoalgesia.ConclusionsCollectively, our findings demonstrate for the first time the important role of Cdk5 in orofacial mechanical nociception. Modulation of Cdk5 activity in primary sensory neurons makes it an attractive potential target for the development of novel analgesics that could be used to treat multiple orofacial pain conditions.


Pain | 2016

Targeted overexpression of tumor necrosis factor-α increases cyclin-dependent kinase 5 activity and TRPV1-dependent Ca2+ influx in trigeminal neurons.

Pablo Rozas; Pablo Lazcano; Ricardo Piña; Andrew Cho; Anita Terse; María Pertusa; Rodolfo Madrid; Christian González-Billault; Ashok B. Kulkarni; Elias Utreras

Abstract We reported earlier that TNF-&agr;, a proinflammatory cytokine implicated in many inflammatory disorders causing orofacial pain, increases the activity of Cdk5, a key kinase involved in brain development and function and recently found to be involved in pain signaling. To investigate a potential mechanism underlying inflammatory pain in trigeminal ganglia (TGs), we engineered a transgenic mouse model (TNFglo) that can conditionally overexpresses TNF-&agr; upon genomic recombination by Cre recombinase. TNFglo mice were bred with Nav1.8-Cre mouse line that expresses the Cre recombinase in sensory neurons to obtain TNF-&agr;:Nav1.8-Cre (TNF-&agr; cTg) mice. Although TNF-&agr; cTg mice appeared normal without any gross phenotype, they displayed a significant increase in TNF-&agr; levels after activation of NF&kgr;B signaling in the TG. IL-6 and MCP-1 levels were also increased along with intense immunostaining for Iba1 and GFAP in TG, indicating the presence of infiltrating macrophages and the activation of satellite glial cells. TNF-&agr; cTg mice displayed increased trigeminal Cdk5 activity, and this increase was associated with elevated levels of phospho-T407-TRPV1 and capsaicin-evocated Ca2+ influx in cultured trigeminal neurons. Remarkably, this effect was prevented by roscovitine, an inhibitor of Cdk5, which suggests that TNF-&agr; overexpression induced sensitization of the TRPV1 channel. Furthermore, TNF-&agr; cTg mice displayed more aversive behavior to noxious thermal stimulation (45°C) of the face in an operant pain assessment device as compared with control mice. In summary, TNF-&agr; overexpression in the sensory neurons of TNF-&agr; cTg mice results in inflammatory sensitization and increased Cdk5 activity; therefore, this mouse model would be valuable for investigating the mechanism of TNF-&agr; involved in orofacial pain.


Journal of Neuroinflammation | 2014

Suppression of neuroinflammation in forebrain-specific Cdk5 conditional knockout mice by PPARγ agonist improves neuronal loss and early lethality

Elias Utreras; Ryusuke Hamada; Michaela Prochazkova; Anita Terse; Satoru Takahashi; Toshio Ohshima; Ashok B. Kulkarni

BackgroundCyclin-dependent kinase 5 (Cdk5) is essential for brain development and function, and its deregulated expression is implicated in some of neurodegenerative diseases. We reported earlier that the forebrain-specific Cdk5 conditional knockout (cKO) mice displayed an early lethality associated with neuroinflammation, increased expression of the neuronal tissue-type plasminogen activator (tPA), and neuronal migration defects.MethodsIn order to suppress neuroinflammation in the cKO mice, we first treated these mice with pioglitazone, a PPARγ agonist, and analyzed its effects on neuronal loss and longevity. In a second approach, to delineate the precise role of tPA in neuroinflammation in these mice, we generated Cdk5 cKO; tPA double knockout (dKO) mice.ResultsWe found that pioglitazone treatment significantly reduced astrogliosis, microgliosis, neuronal loss and behavioral deficit in Cdk5 cKO mice. Interestingly, the dKO mice displayed a partial reversal in astrogliosis, but they still died at early age, suggesting that the increased expression of tPA in the cKO mice does not contribute significantly to the pathological process leading to neuroinflammation, neuronal loss and early lethality.ConclusionThe suppression of neuroinflammation in Cdk5 cKO mice ameliorates gliosis and neuronal loss, thus suggesting the potential beneficial effects of the PPARγ agonist pioglitazone for the treatment for neurodegenerative diseases.


Journal of Dental Research | 2016

Conditional TNF-α Overexpression in the Tooth and Alveolar Bone Results in Painful Pulpitis and Osteitis.

Bradford Hall; Lu Zhang; Z.J. Sun; Elias Utreras; M. Prochazkova; Andrew Cho; Anita Terse; Praveen R. Arany; John C. Dolan; Brian L. Schmidt; Ashok B. Kulkarni

Tumor necrosis factor–α (TNF-α) is a proalgesic cytokine that is commonly expressed following tissue injury. TNF-α expression not only promotes inflammation but can also lead to pain hypersensitivity in nociceptors. With the established link between TNF-α and inflammatory pain, we identified its increased expression in the teeth of patients affected with caries and pulpitis. We generated a transgenic mouse model (TNF-αglo) that could be used to conditionally overexpress TNF-α. These mice were bred with a dentin matrix protein 1 (DMP1)–Cre line for overexpression of TNF-α in both the tooth pulp and bone to study oral pain that would result from subsequent development of pulpitis and bone loss. The resulting DMP1/TNF-αglo mice show inflammation in the tooth pulp that resembles pulpitis while also displaying periodontal bone loss. Inflammatory infiltrates and enlarged blood vessels were observed in the tooth pulp. Pulpitis and osteitis affected the nociceptive neurons innervating the orofacial region by causing increased expression of inflammatory cytokines within the trigeminal ganglia. With this new mouse model morphologically mimicking pulpitis and osteitis, we tested it for signs of oral pain with an oral function assay (dolognawmeter). This assay/device records the time required by a mouse to complete a discrete gnawing task. The duration of gnawing required by the DMP1/TNF-αglo mice to complete the task was greater than that for the controls; extended gnaw time in a dolognawmeter indicates reduced orofacial function. With the DMP1/TNF-αglo mice, we have shown that TNF-α expression alone can produce inflammation similar to pulpitis and osteitis and that this mouse model can be used to study dental inflammatory pain.


Pain | 2017

Cyclin - dependent kinase 5 modulates the P2X2a receptor channel gating through phosphorylation of C - terminal threonine 372

Claudio Coddou; Rodrigo Sandoval; Patricio Castro; Pablo Lazcano; María José Hevia; Milos B. Rokic; Bradford Hall; Anita Terse; Christian González-Billault; Ashok B. Kulkarni; Stanko S. Stojilkovic; Elias Utreras

Abstract The purinergic P2X2 receptor (P2X2R) is an adenosine triphosphate–gated ion channel widely expressed in the nervous system. Here, we identified a putative cyclin-dependent kinase 5 (Cdk5) phosphorylation site in the full-size variant P2X2aR (372TPKH375), which is absent in the splice variant P2X2bR. We therefore investigated the effects of Cdk5 and its neuronal activator, p35, on P2X2aR function. We found an interaction between P2X2aR and Cdk5/p35 by co-immunofluorescence and co-immunoprecipitation in HEK293 cells. We also found that threonine phosphorylation was significantly increased in HEK293 cells co-expressing P2X2aR and p35 as compared to cells expressing only P2X2aR. Moreover, P2X2aR-derived peptides encompassing the Cdk5 consensus motif were phosphorylated by Cdk5/p35. Whole-cell patch-clamp recordings indicated a delay in development of use-dependent desensitization (UDD) of P2X2aR but not of P2X2bR in HEK293 cells co-expressing P2X2aR and p35. In Xenopus oocytes, P2X2aRs showed a slower UDD than in HEK293 cells and Cdk5 activation prevented this effect. A similar effect was found in P2X2a/3R heteromeric currents in HEK293 cells. The P2X2aR-T372A mutant was resistant to UDD. In endogenous cells, we observed similar distribution between P2X2R and Cdk5/p35 by co-localization using immunofluorescence in primary culture of nociceptive neurons. Moreover, co-immunoprecipitation experiments showed an interaction between Cdk5 and P2X2R in mouse trigeminal ganglia. Finally, endogenous P2X2aR-mediated currents in PC12 cells and P2X2/3R mediated increases of intracellular Ca2+ in trigeminal neurons were Cdk5 dependent, since inhibition with roscovitine accelerated the desensitization kinetics of these responses. These results indicate that the P2X2aR is a novel target for Cdk5-mediated phosphorylation, which might play important physiological roles including pain signaling.

Collaboration


Dive into the Anita Terse's collaboration.

Top Co-Authors

Avatar

Ashok B. Kulkarni

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michaela Prochazkova

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bradford Hall

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Elias Utreras

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Elias Utreras

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael J. Iadarola

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Andrew Cho

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Harish C. Pant

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jason Keller

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge