Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anja Bye is active.

Publication


Featured researches published by Anja Bye.


Circulation | 2007

Superior Cardiovascular Effect of Aerobic Interval Training Versus Moderate Continuous Training in Heart Failure Patients A Randomized Study

Ulrik Wisløff; Asbjørn Støylen; Jan P. Loennechen; Morten Bruvold; Øivind Rognmo; Per Magnus Haram; Arnt Erik Tjønna; Jan Helgerud; Stig A. Slørdahl; Sang Jun Lee; Vibeke Videm; Anja Bye; Godfrey L. Smith; Sonia M. Najjar; Øyvind Ellingsen; Terje Skjærpe

Background— Exercise training reduces the symptoms of chronic heart failure. Which exercise intensity yields maximal beneficial adaptations is controversial. Furthermore, the incidence of chronic heart failure increases with advanced age; it has been reported that 88% and 49% of patients with a first diagnosis of chronic heart failure are >65 and >80 years old, respectively. Despite this, most previous studies have excluded patients with an age >70 years. Our objective was to compare training programs with moderate versus high exercise intensity with regard to variables associated with cardiovascular function and prognosis in patients with postinfarction heart failure. Methods and Results— Twenty-seven patients with stable postinfarction heart failure who were undergoing optimal medical treatment, including &bgr;-blockers and angiotensin-converting enzyme inhibitors (aged 75.5±11.1 years; left ventricular [LV] ejection fraction 29%; &OV0312;o2peak 13 mL · kg−1 · min−1) were randomized to either moderate continuous training (70% of highest measured heart rate, ie, peak heart rate) or aerobic interval training (95% of peak heart rate) 3 times per week for 12 weeks or to a control group that received standard advice regarding physical activity. &OV0312;o2peak increased more with aerobic interval training than moderate continuous training (46% versus 14%, P<0.001) and was associated with reverse LV remodeling. LV end-diastolic and end-systolic volumes declined with aerobic interval training only, by 18% and 25%, respectively; LV ejection fraction increased 35%, and pro-brain natriuretic peptide decreased 40%. Improvement in brachial artery flow-mediated dilation (endothelial function) was greater with aerobic interval training, and mitochondrial function in lateral vastus muscle increased with aerobic interval training only. The MacNew global score for quality of life in cardiovascular disease increased in both exercise groups. No changes occurred in the control group. Conclusions— Exercise intensity was an important factor for reversing LV remodeling and improving aerobic capacity, endothelial function, and quality of life in patients with postinfarction heart failure. These findings may have important implications for exercise training in rehabilitation programs and future studies.


Circulation | 2008

Aerobic Interval Training Versus Continuous Moderate Exercise as a Treatment for the Metabolic Syndrome A Pilot Study

Arnt Erik Tjønna; Sang Jun Lee; Øivind Rognmo; Tomas Stølen; Anja Bye; Per Magnus Haram; Jan Pål Loennechen; Qusai Y. Al-Share; Eirik Skogvoll; Stig A. Slørdahl; Ole Johan Kemi; Sonia M. Najjar; Ulrik Wisløff

Background— Individuals with the metabolic syndrome are 3 times more likely to die of heart disease than healthy counterparts. Exercise training reduces several of the symptoms of the syndrome, but the exercise intensity that yields the maximal beneficial adaptations is in dispute. We compared moderate and high exercise intensity with regard to variables associated with cardiovascular function and prognosis in patients with the metabolic syndrome. Methods and Results— Thirty-two metabolic syndrome patients (age, 52.3±3.7 years; maximal oxygen uptake [&OV0312;o2max], 34 mL · kg−1 · min−1) were randomized to equal volumes of either moderate continuous moderate exercise (CME; 70% of highest measured heart rate [Hfmax]) or aerobic interval training (AIT; 90% of Hfmax) 3 times a week for 16 weeks or to a control group. &OV0312;o2max increased more after AIT than CME (35% versus 16%; P<0.01) and was associated with removal of more risk factors that constitute the metabolic syndrome (number of factors: AIT, 5.9 before versus 4.0 after; P<0.01; CME, 5.7 before versus 5.0 after; group difference, P<0.05). AIT was superior to CME in enhancing endothelial function (9% versus 5%; P<0.001), insulin signaling in fat and skeletal muscle, skeletal muscle biogenesis, and excitation-contraction coupling and in reducing blood glucose and lipogenesis in adipose tissue. The 2 exercise programs were equally effective at lowering mean arterial blood pressure and reducing body weight (−2.3 and −3.6 kg in AIT and CME, respectively) and fat. Conclusions— Exercise intensity was an important factor for improving aerobic capacity and reversing the risk factors of the metabolic syndrome. These findings may have important implications for exercise training in rehabilitation programs and future studies.


Clinical Science | 2009

Aerobic interval training reduces cardiovascular risk factors more than a multitreatment approach in overweight adolescents

Arnt E. Tjønna; Tomas Stølen; Anja Bye; Marte Volden; Stig A. Slørdahl; Rønnaug Ødegård; Eirik Skogvoll; Ulrik Wisløff

The aim of the present study was to compare the effects of a multidisciplinary approach (MTG) and aerobic interval training (AIT) on cardiovascular risk factors in overweight adolescents. A total of 62 overweight and obese adolescents from Trøndelag County in Norway, referred to medical treatment at St Olavs Hospital, Trondheim, Norway, were invited to participate. Of these, 54 adolescents (age, 14.0 +/- 0.3 years) were randomized to either AIT (4 x 4 min intervals at 90% of maximal heart rate, each interval separated by 3 min at 70%, twice a week for 3 months) or to MTG (exercise, dietary and psychological advice, twice a month for 12 months). Follow-up testing occurred at 3 and 12 months. VO(2max) (maximal oxygen uptake) increased more after AIT compared with MTG, both at 3 months (11 compared with 0%; P<0.01) and 12 months (12 compared with -1%; P<0.01). AIT enhanced endothelial function compared with MTG at both 3 months (absolute change, 5.1 compared with 3.9%; P<0.01) and 12 months (absolute change, 6.3 compared with 1.0%; P<0.01). AIT was favourable compared with MTG in reducing BMI (body mass index), percentage of fat, MAP (mean arterial blood pressure) and increasing peak oxygen pulse. In addition, AIT induced a more favourable regulation of blood glucose and insulin compared with MTG. In conclusion, the novel findings of the present proof-of-concept study was that 3 months of twice weekly high-intensity exercise sessions reduced several known cardiovascular risk factors in obese adolescents more than that observed after a multitreatment strategy, which was initiated as hospital treatment. Follow-up at 12 months confirmed that AIT improved or maintained these risk factors to a better degree than MTG.


Journal of Strength and Conditioning Research | 2008

Endothelial function in highly endurance-trained men : effects of acute exercise.

Øivind Rognmo; Tor Halvor Bjørnstad; Christian Kahrs; Arnt Erik Tjønna; Anja Bye; Per Magnus Haram; Tomas Stølen; Stig A. Slørdahl; Ulrik Wisløff

Exercise training reverses endothelial dysfunction, but the effect in young, healthy subjects is less clear. We determined the influence of maximal oxygen uptake (&OV0312;o2max) and a single bout of high-intensity exercise on flow-mediated dilatation (FMD), brachial artery diameter, peak blood flow, nitric oxide (NO) bioavailability, and antioxidant status in highly endurance-trained men and their sedentary counterparts. Ten men athletes (mean ± SEM age 23.5 ± 0.9 years, height 182.6 ± 2.4 cm, weight 72.5 ± 2.4 kg, &OV0312;o2max 75.9 ± 0.8 mL·kg−1·min−1) and seven healthy controls (age 25.4 ± 1.2 years, height 183.9 ± 3.74 cm, weight 92.8 ± 3.9 kg, &OV0312;o2max 47.7 ± 1.7 mL·kg−1·min−1) took part in the study. FMD, brachial artery diameter, and peak blood flow were measured using echo-Doppler before, 1 hour, 24 hours, and 48 hours after a single bout of interval running for 5 × 5 minutes at 90% of maximal heart rate. NO bioavailability and antioxidant status in blood were measured at all time points. Maximal arterial diameter and peak flow were 10-15% (P < 0.02) and 28-35% (P < 0.02) larger, respectively, in athletes vs. controls at all time points, and similar FMD were observed, apart from a transient decay of FMD in athletes 1 hour post exercise. NO bioavailability increased significantly after exercise in both groups and decreased to baseline levels after 24 hours in controls but remained increased 80% and 93% above baseline 24 and 48 hours post exercise in athletes. Antioxidant status was equal in the two groups at baseline and increased by approximately 10% 1 hour post exercise, an effect that lasted for 24 hours. Athletes had larger arterial diameter but similar FMD as untrained subjects, i.e., athletes had larger capacity for blood transport compared with their untrained counterparts. The observed FMD, bioavailability of NO, and antioxidant status in blood were highly dependent on the time elapsed after the exercise session.


PLOS ONE | 2013

Circulating MicroRNAs and Aerobic Fitness - The HUNT-Study

Anja Bye; Helge Røsjø; Stian Thoresen Aspenes; Gianluigi Condorelli; Torbjørn Omland; Ulrik Wisløff

Aerobic fitness, measured as maximal oxygen uptake (VO2max), is a good indicator of cardiovascular health, and a strong predictor of cardiovascular mortality. Biomarkers associated with low VO2max may therefore represent potential early markers of future cardiovascular disease (CVD). The aim of this study was to assess whether circulating microRNAs (miRs) are associated with VO2max-level in healthy individuals. In a screening study, 720 miRs were measured in serum samples from healthy individuals (40–45 yrs) with high (n = 12) or low (n = 12) VO2max matched for gender, age and physical activity. Candiate miRs were validated in a second cohort of subjects with high (n = 38) or low (n = 38) VO2max. miR-210 and miR-222 were found to be higher in the low VO2max-group (p<0.05). In addition, miR-21 was increased in male participants with low VO2max (p<0.05). There were no correlations between traditional risk factors for CVD (blood pressure, cholesterol, smoking habit, or obesity) and miR-21, miR-210 and miR-222. DIANA-mirPath identified 611 potential gene-targets of miR-21, miR-210 and miR-222, and pathway analysis indicated alterations in several important signaling systems in subjects with low VO2max. Potential bias involve that blood was collected from non-fasting individuals, and that 8 performed exercise within 24 h before sampling. In conclusion, we found that miR-210, miR-21, and miR-222 were increased in healthy subjects with low VO2max. The lack of association between these three miRs, and other fitness related variables as well as traditional CVD risk factors, suggests that these miRs may have a potential as new independent biomarkers of fitness level and future CVD.


Physiological Genomics | 2008

Aerobic capacity-dependent differences in cardiac gene expression

Anja Bye; Mette Langaas; Morten Høydal; Ole Johan Kemi; Garrett Heinrich; Lauren G. Koch; Steven L. Britton; Sonia M. Najjar; Øyvind Ellingsen; Ulrik Wisløff

Aerobic capacity is a strong predictor of cardiovascular mortality. To determine the relationship between inborn aerobic capacity and cardiac gene expression we examined genome-wide gene expression in hearts of rats artificially selected for high and low running capacity (HCR and LCR, respectively) over 16 generations. The artificial selection of LCR caused accumulation of risk factors of cardiovascular disease similar to the metabolic syndrome seen in human, whereas HCR had markedly better cardiac function. We also studied alterations in gene expression in response to exercise training in these animals. Left ventricle gene expression of both sedentary and exercise-trained HCR and LCR was characterized by microarray and gene ontology analysis. Out of 28,000 screened genes, 1,540 were differentially expressed between sedentary HCR and LCR. Only one gene was found differentially expressed by exercise training, but this gene had unknown name and function. Sedentary HCR expressed higher amounts of genes involved in lipid metabolism, whereas sedentary LCR expressed higher amounts of the genes involved in glucose metabolism. This suggests a switch in cardiac energy substrate utilization from normal mitochondrial fatty acid beta-oxidation in HCR to carbohydrate metabolism in LCR, an event that often occurs in diseased hearts. LCR were also associated with pathological growth signaling and cellular stress. Hypoxic conditions seemed to be a common source for several of these observations, triggering hypoxia-induced alterations of transcription. In conclusion, inborn high vs. low aerobic capacity was associated with differences in cardiac energy substrate, growth signaling, and cellular stress.


Journal of Strength and Conditioning Research | 2011

Time Course of Endothelial Adaptation After Acute and Chronic Exercise in Patients With Metabolic Syndrome

Arnt Erik Tjønna; Øivind Rognmo; Anja Bye; Tomas Stølen; Ulrik Wisløff

Tjønna, AE, Rognmo, Ø, Bye, A, Stølen, TO, and Wisløff, U. Time course of endothelial adaptation after acute and chronic exercise in patients with metabolic syndrome. J Strength Cond Res 25(9): 2552-2558, 2011—Clustering of cardiovascular risk factors may lead to endothelial dysfunction. Physical exercise is an important factor in prevention and treatment of endothelial dysfunction. We wanted to determine the time course of adaptation to a single bout of exercise at either high or moderate intensity upon endothelial function both before and after a 16-week fitness program in patients with metabolic syndrome. Twenty-eight patients with metabolic syndrome participated in the study and were randomized and stratified (according to age and sex) into an aerobic interval exercise training group (AIT, n = 11), a continuously moderate-intensity exercise training group (CME, n = 8) or to a control group (n = 9). Flow-mediated dilatation (FMD) was determined at baseline, immediately, 24, 48, and 72 hours after 1 bout of exercise and repeated after 16 weeks of exercise. In the untrained state, FMD improved from 5 to 11% (p = 0.003) immediately after a single bout of aerobic interval training (AIT), an effect lasting 72 hours postexercise. In comparison, continuous moderate exercise (CME) improved FMD immediately after a single bout of exercise from 5 to 8% (p = 0.02), an effect lasting 24 hours postexercise (group difference, p < 0.001). In the trained state, a single bout of AIT resulted in a 2% (p = 0.007) acute increase of FMD lasting 48 hours postexercise. The CME increased FMD by 3% (p < 0.01), an effect lasting 24 hours postexercise (group difference p = 0.0012). Blood glucose level decreased after 1 single bout of AIT in the untrained state (p < 0.05), and the effect lasted at least 72 hours postexercise (p < 0.01). Acute CME decreased blood glucose with normalization of the values 24 hours postexercise (p < 0.01). A single bout of exercise in the trained state reduced fasting blood glucose by 10% (p < 0.05) after both AIT and CME. Exercise training, especially high intensity, thus appears to be highly beneficial in reducing blood glucose and improving endothelial function.


Physiological Genomics | 2008

Gene expression profiling of skeletal muscle in exercise-trained and sedentary rats with inborn high and low VO2max

Anja Bye; Morten Høydal; Daniele Catalucci; Mette Langaas; Ole Johan Kemi; Vidar Beisvag; Lauren G. Koch; Steven L. Britton; Øyvind Ellingsen; Ulrik Wisløff

The relationship between inborn maximal oxygen uptake (VO(2max)) and skeletal muscle gene expression is unknown. Since low VO(2max) is a strong predictor of cardiovascular mortality, genes related to low VO(2max) might also be involved in cardiovascular disease. To establish the relationship between inborn VO(2max) and gene expression, we performed microarray analysis of the soleus muscle of rats artificially selected for high- and low running capacity (HCR and LCR, respectively). In LCR, a low VO(2max) was accompanied by aggregation of cardiovascular risk factors similar to the metabolic syndrome. Although sedentary HCR were able to maintain a 120% higher running speed at VO(2max) than sedentary LCR, only three transcripts were differentially expressed (FDR <or=0.05) between the groups. Sedentary LCR expressed high levels of a transcript with strong homology to human leucyl-transfer RNA synthetase, of whose overexpression has been associated with a mutation linked to mitochondrial dysfunction. Moreover, we studied exercise-induced alterations in soleus gene expression, since accumulating evidence indicates that long-term endurance training has beneficial effects on the metabolic syndrome. In terms of gene expression, the response to exercise training was more pronounced in HCR than LCR. HCR upregulated several genes associated with lipid metabolism and fatty acid elongation, whereas LCR upregulated only one transcript after exercise training. The results indicate only minor differences in soleus muscle gene expression between sedentary HCR and LCR. However, the inborn level of fitness seems to influence the transcriptional adaption to exercise, as more genes were upregulated after exercise training in HCR than LCR.


Journal of Molecular and Cellular Cardiology | 2016

Circulating microRNAs predict future fatal myocardial infarction in healthy individuals – The HUNT study

Anja Bye; Helge Røsjø; Javaid Nauman; Gustavo J Silva; Turid Follestad; Torbjørn Omland; Ulrik Wisløff

Coronary heart disease is the most common cause of death, and the number of individuals at risk is increasing. To better manage this pandemic, improved tool for risk prediction, including more accurate biomarkers are needed. The objective of this study was to assess the utility of circulating microRNAs (miRs) to predict future fatal acute myocardial infarction (AMI) in healthy participants. We performed a prospective nested case-control study with 10-year observation period and fatal AMI as endpoint. In total, 179 miRs were quantified by real-time polymerase chain reaction in serum of 112 healthy participants (40-70years) that either (1) suffered from fatal AMI within 10years [n=56], or (2) remained healthy [n=56, risk factor-matched controls]. Candidate miRs were validated in a separate cohort of healthy individuals (n=100). Twelve miRs were differently expressed in cases and controls in the derivation cohort (p<0.05). Among these, 10 miRs differed significantly between cases and controls in the validation cohort (p<0.05). We identified gender dimorphisms, as miR-424-5p and miR-26a-5p were associated exclusively with risk in men and women, respectively. The best model for predicting future AMI consisted of miR-106a-5p, miR-424-5p, let-7g-5p, miR-144-3p and miR-660-5p, providing 77.6% correct classification for both genders, and 74.1% and 81.8% for men and women, respectively. Adding these 5 miRs to the Framingham Risk Score, increased the AUC from 0.72 to 0.91 (p<0.001). In conclusion, we identified several miRs associated with future AMI, revealed gender-specific associations, and proposed a panel of 5 miRs to enhance AMI risk prediction in healthy individuals.


International Journal of Cardiology | 2014

Remote ischemic preconditioning preserves mitochondrial function and activates pro-survival protein kinase Akt in the left ventricle during cardiac surgery: A randomized trial

Katrine Hordnes Slagsvold; José Bianco Nascimento Moreira; Øivind Rognmo; Morten Høydal; Anja Bye; Ulrik Wisløff; Alexander Wahba

BACKGROUND Understanding the intracellular mechanisms induced by remote ischemic preconditioning (RIPC) in the human left ventricle opens new possibilities for development of pharmacological cardioprotection against ischemia and reperfusion injury. In this study we investigated the effects of RIPC on mitochondrial function, activation of pro-survival protein kinase Akt and microRNA expression in left ventricular biopsies from patients undergoing coronary artery bypass surgery (CABG). METHODS Sixty patients were randomized to control (n=30) or RIPC (n=30). A blood pressure cuff was applied to the arm of all patients preoperatively. The cuff remained deflated in control group, whereas RIPC was performed by 3 cycles of cuff inflation to 200 mm Hg for 5 min, separated by 5 min deflation intervals. Left ventricular biopsies were obtained before and 15 min after aortic declamping. The primary outcome was mitochondrial respiration measured in situ. Secondary outcomes were activation of protein kinase Akt, assessed by western immunoblotting, and expression of microRNAs assessed by array and real-time polymerase chain reaction. RESULTS Mitochondrial respiration was preserved during surgery in patients receiving RIPC (+0.2 μmol O2/min/g, p=0.69), and reduced by 15% in controls (-1.5 μmol O2/min/g, p=0.02). Furthermore, RIPC activated protein kinase Akt before aortic clamping (difference from control +43.3%, p=0.04), followed by increased phosphorylation of Akt substrates at reperfusion (+26.8%, p<0.01). No differences were observed in microRNA expression. CONCLUSIONS RIPC preserves mitochondrial function and activates pro-survival protein kinase Akt in left ventricle of patients undergoing CABG. Modulation of mitochondrial function and Akt activation should be further explored as cardioprotective drug targets. CLINICAL TRIAL REGISTRATION http://www.clinicaltrials.gov, unique identifier: NCT01308138.

Collaboration


Dive into the Anja Bye's collaboration.

Top Co-Authors

Avatar

Ulrik Wisløff

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tomas Stølen

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Stig A. Slørdahl

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Arnt E. Tjønna

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Øivind Rognmo

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Morten Høydal

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Per Magnus Haram

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge