Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anja Katrin Bielinsky is active.

Publication


Featured researches published by Anja Katrin Bielinsky.


Molecular Cell | 1999

Chromosomal ARS1 Has a Single Leading Strand Start Site

Anja Katrin Bielinsky; Susan A. Gerbi

Initiation sites for DNA synthesis in the chromosomal autonomously replicating sequence (ARS)1 of Saccharomyces cerevisiae were detected at the nucleotide level. The transition from discontinuous to continuous synthesis defines the origin of bidirectional replication (OBR), which mapped adjacent to the origin recognition complex binding site. To ascertain which sites represented starts for leading or lagging strands, we characterized DNA replication from ARS1 in a cdc9 (DNA ligase I) mutant, defective for joining Okazaki fragments. Leading strand synthesis in ARS1 initiated at only a single site, the OBR. Thus, replication in S. cerevisiae is not initiated stochastically by choosing one out of multiple possible sites but, rather, is a highly regulated process with one precise start point.


The EMBO Journal | 2006

Genome-wide replication profiles of S-phase checkpoint mutants reveal fragile sites in yeast.

Miruthubashini Raveendranathan; Sharbani Chattopadhyay; Yung Tsi Bolon; Justin Haworth; Duncan J. Clarke; Anja Katrin Bielinsky

The S‐phase checkpoint kinases Mec1 and Rad53 in the budding yeast, Saccharomyces cerevisiae, are activated in response to replication stress that induces replication fork arrest. In the absence of a functional S‐phase checkpoint, stalled replication forks collapse and give rise to chromosome breakage. In an attempt to better understand replication dynamics in S‐phase checkpoint mutants, we developed a replication origin array for budding yeast that contains 424 of 432 previously identified potential origin regions. As expected, mec1‐1 and rad53‐1 mutants failed to inhibit late origin activation. Surprisingly however, 17 early‐firing regions were not replicated efficiently in these mutants. This was not due to a lack of initiation, but rather to problems during elongation, as replication forks arrested in close proximity to these origins, resulting in the accumulation of small replication intermediates and eventual replication fork collapse. Importantly, these regions were not only prone to chromosome breakage in the presence of exogenous stress but also in its absence, similar to fragile sites in the human genome.


Current Biology | 2001

Origin recognition complex binding to a metazoan replication origin

Anja Katrin Bielinsky; Hannah G. Blitzblau; Eileen L. Beall; Michael Ezrokhi; Heidi S. Smith; Michael R. Botchan; Susan A. Gerbi

The initiation of DNA replication in eukaryotic cells at the onset of S phase requires the origin recognition complex (ORC) [1]. This six-subunit complex, first isolated in Saccharomyces cerevisiae [2], is evolutionarily conserved [1]. ORC participates in the formation of the prereplicative complex [3], which is necessary to establish replication competence. The ORC-DNA interaction is well established for autonomously replicating sequence (ARS) elements in yeast in which the ARS consensus sequence [4] (ACS) constitutes part of the ORC binding site [2, 5]. Little is known about the ORC-DNA interaction in metazoa. For the Drosophila chorion locus, it has been suggested that ORC binding is dispersed [6]. We have analyzed the amplification origin (ori) II/9A of the fly, Sciara coprophila. We identified a distinct 80-base pair (bp) ORC binding site and mapped the replication start site located adjacent to it. The binding of ORC to this 80-bp core region is ATP dependent and is necessary to establish further interaction with an additional 65-bp of DNA. This is the first time that both the ORC binding site and the replication start site have been identified in a metazoan amplification origin. Thus, our findings extend the paradigm from yeast ARS1 to multicellular eukaryotes, implicating ORC as a determinant of the position of replication initiation.


Molecular and Cellular Biology | 2006

Interaction between PCNA and Diubiquitinated Mcm10 Is Essential for Cell Growth in Budding Yeast

Sapna Das-Bradoo; Robin M. Ricke; Anja Katrin Bielinsky

ABSTRACT The minichromosome maintenance protein 10 (Mcm10) is an evolutionarily conserved factor that is essential for replication initiation and elongation. Mcm10 is part of the eukaryotic replication fork and interacts with a variety of proteins, including the Mcm2-7 helicase and DNA polymerase alpha/primase complexes. A motif search revealed a match to the proliferating cell nuclear antigen (PCNA)-interacting protein (PIP) box in Mcm10. Here, we demonstrate a direct interaction between Mcm10 and PCNA that is alleviated by mutations in conserved residues of the PIP box. Interestingly, only the diubiquitinated form of Mcm10 binds to PCNA. Diubiquitination of Mcm10 is cell cycle regulated; it first appears in late G1 and persists throughout S phase. During this time, diubiquitinated Mcm10 is associated with chromatin, suggesting a direct role in DNA replication. Surprisingly, a Y245A substitution in the PIP box of Mcm10 that inhibits the interaction with PCNA abolishes cell proliferation. This severe-growth phenotype, which has not been observed for analogous mutations in other PCNA-interacting proteins, is rescued by a compensatory mutation in PCNA that restores interaction with Mcm10-Y245A. Taken together, our results suggest that diubiquitinated Mcm10 interacts with PCNA to facilitate an essential step in DNA elongation.


Genes & Development | 2013

RNF4 and PLK1 are required for replication fork collapse in ATR-deficient cells

Ryan L. Ragland; Sima Patel; Rebecca S. Rivard; Kevin Smith; Ashley A. Peters; Anja Katrin Bielinsky; Eric J. Brown

The ATR-CHK1 axis stabilizes stalled replication forks and prevents their collapse into DNA double-strand breaks (DSBs). Here, we show that fork collapse in Atr-deleted cells is mediated through the combined effects the sumo targeted E3-ubiquitin ligase RNF4 and activation of the AURKA-PLK1 pathway. As indicated previously, Atr-deleted cells exhibited a decreased ability to restart DNA replication following fork stalling in comparison with control cells. However, suppression of RNF4, AURKA, or PLK1 returned the reinitiation of replication in Atr-deleted cells to near wild-type levels. In RNF4-depleted cells, this rescue directly correlated with the persistence of sumoylation of chromatin-bound factors. Notably, RNF4 repression substantially suppressed the accumulation of DSBs in ATR-deficient cells, and this decrease in breaks was enhanced by concomitant inhibition of PLK1. DSBs resulting from ATR inhibition were also observed to be dependent on the endonuclease scaffold protein SLX4, suggesting that RNF4 and PLK1 either help activate the SLX4 complex or make DNA replication fork structures accessible for subsequent SLX4-dependent cleavage. Thus, replication fork collapse following ATR inhibition is a multistep process that disrupts replisome function and permits cleavage of the replication fork.


Current Opinion in Genetics & Development | 2002

DNA replication and chromatin

Susan A. Gerbi; Anja Katrin Bielinsky

The study of DNA replication in eukaryotic chromosomes has revealed a multitude of different regulatory levels. Nuclear and chromosomal location as well as chromatin structure may affect the activity of replication origins and their modulation during development.


Journal of Biological Chemistry | 2006

A conserved Hsp10-like domain in Mcm10 is required to stabilize the catalytic subunit of DNA polymerase-α in budding yeast

Robin M. Ricke; Anja Katrin Bielinsky

Mcm10 is a conserved eukaryotic DNA replication factor that is required for S phase progression. Recently, Mcm10 has been shown to interact physically with the DNA polymerase-α (pol-α)·primase complex. We show now that Mcm10 is in a complex with pol-α throughout the cell cycle. In temperature-sensitive mcm10-1 mutants, depletion of Mcm10 results in degradation of the catalytic subunit of pol-α, Cdc17/Pol1, regardless of whether cells are in G1, S, or G2 phase. Importantly, Cdc17 protein levels can be restored upon overexpression of exogenous Mcm10 in mcm10-1 mutants that are grown at the nonpermissive temperature. Moreover, overexpressed Cdc17 that is normally subject to rapid degradation is stabilized by Mcm10 co-overexpression but not by co-overexpression of the B-subunit of pol-α, Pol12. These results are consistent with Mcm10 having a role as a nuclear chaperone for Cdc17. Mutational analysis indicates that a conserved heat-shock protein 10 (Hsp10)-like domain in Mcm10 is required to prevent the degradation of Cdc17. Substitution of a single residue in the Hsp10-like domain of endogenous Mcm10 results in a dramatic reduction of steady-state Cdc17 levels. The high degree of evolutionary conservation of this domain implies that stabilizing Cdc17 may be a conserved function of Mcm10.


Journal of Neuroimmunology | 1993

Functional dichotomy of mouse microglia developed in vitro: Differential effects of macrophage and granulocyte/macrophage colony-stimulating factor on cytokine secretion and antitoxoplasmic activity

Hans-Georg Fischer; Anja Katrin Bielinsky; B. Nitzgen; Walter Däubener; Ulrich Hadding

After differentiation either with exogenous macrophage (M) or with granulocyte/macrophage (GM) colony-stimulating factor (CSF) microglial cells were isolated from neonatal mouse brain cell cultures and were comparatively tested for secretory immune effector cell functions. Both factors obviously do not promote the development of cells with biased growth requirement; however, the two microglia populations displayed distinct potentials to produce inflammatory cytokines. Upon gradual stimulation by lipopolysaccharide, the cells harvested from M-CSF-driven culture released more interleukin-1 and tumor necrosis factor activity, GM-CSF-grown cells on the contrary proved superior in interleukin-6 secretion. This pattern was paralleled by corresponding different kinetics of cytokine release in both types of microglial cells. When infected with Toxoplasma gondii only GM-CSF-differentiated cells were able to restrict the intracellular multiplication of tachyzoites in the absence of external stimuli. As described for interferon-gamma-treated macrophages, the antiparasitic activity of this microglia population is due to the synthesis of reactive nitrogen intermediates, since it was antagonized by NG-monomethyl-L-arginine, a competitive inhibitor of the arginine-dependent metabolic pathway. Complementary to previous data which attest an intrinsic capability for antigen presentation to GM-CSF-grown microglia, the functional state of the cells elicited by M-CSF and GM-CSF, respectively, may correspond to the resting and an activated form of microglia as distinguished in vivo.


Structure | 2008

Structural basis for DNA binding by replication initiator Mcm10.

Eric M. Warren; Sivaraja Vaithiyalingam; Justin Haworth; Briana H. Greer; Anja Katrin Bielinsky; Walter J. Chazin; Brandt F. Eichman

Mcm10 is an essential eukaryotic DNA replication protein required for assembly and progression of the replication fork. The highly conserved internal domain (Mcm10-ID) has been shown to physically interact with single-stranded (ss) DNA, DNA polymerase alpha, and proliferating cell nuclear antigen (PCNA). The crystal structure of Xenopus laevis Mcm10-ID presented here reveals a DNA binding architecture composed of an oligonucleotide/oligosaccharide-fold followed in tandem by a variant and highly basic zinc finger. NMR chemical shift perturbation and mutational studies of DNA binding activity in vitro reveal how Mcm10 uses this unique surface to engage ssDNA. Corresponding mutations in Saccharomyces cerevisiae result in increased sensitivity to replication stress, demonstrating the functional importance of DNA binding by this region of Mcm10 to replication. In addition, mapping Mcm10 mutations known to disrupt PCNA, polymerase alpha, and DNA interactions onto the crystal structure provides insight into how Mcm10 might coordinate protein and DNA binding within the replisome.


Trends in Biochemical Sciences | 2013

Enigmatic roles of Mcm10 in DNA replication

Yee Mon Thu; Anja Katrin Bielinsky

Minichromosome maintenance protein 10 (Mcm10) is required for DNA replication in all eukaryotes. Although the exact contribution of Mcm10 to genome replication remains heavily debated, early reports suggested that it promotes DNA unwinding and origin firing. These ideas have been solidified by recent studies that propose a role for Mcm10 in helicase activation. Whereas the molecular underpinnings of this activation step have yet to be revealed, structural data on Mcm10 provide further insight into a possible mechanism of action. The essential role in DNA replication initiation is not mutually exclusive with additional functions that Mcm10 may have as part of the elongation machinery. Here, we review the recent findings regarding the role of Mcm10 in DNA replication and discuss existing controversies.

Collaboration


Dive into the Anja Katrin Bielinsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yee Mon Thu

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge