Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anja Kuchenbuch is active.

Publication


Featured researches published by Anja Kuchenbuch.


The Journal of Neuroscience | 2012

Musical Expertise Induces Audiovisual Integration of Abstract Congruency Rules

Evangelos Paraskevopoulos; Anja Kuchenbuch; Sibylle C. Herholz; Christo Pantev

Perception of everyday life events relies mostly on multisensory integration. Hence, studying the neural correlates of the integration of multiple senses constitutes an important tool in understanding perception within an ecologically valid framework. The present study used magnetoencephalography in human subjects to identify the neural correlates of an audiovisual incongruency response, which is not generated due to incongruency of the unisensory physical characteristics of the stimulation but from the violation of an abstract congruency rule. The chosen rule—“the higher the pitch of the tone, the higher the position of the circle”—was comparable to musical reading. In parallel, plasticity effects due to long-term musical training on this response were investigated by comparing musicians to non-musicians. The applied paradigm was based on an appropriate modification of the multifeatured oddball paradigm incorporating, within one run, deviants based on a multisensory audiovisual incongruent condition and two unisensory mismatch conditions: an auditory and a visual one. Results indicated the presence of an audiovisual incongruency response, generated mainly in frontal regions, an auditory mismatch negativity, and a visual mismatch response. Moreover, results revealed that long-term musical training generates plastic changes in frontal, temporal, and occipital areas that affect this multisensory incongruency response as well as the unisensory auditory and visual mismatch responses.


Neuropsychologia | 2012

Statistical learning effects in musicians and non-musicians: An MEG study

Evangelos Paraskevopoulos; Anja Kuchenbuch; Sibylle C. Herholz; Christo Pantev

This study aimed to assess the effect of musical training in statistical learning of tone sequences using Magnetoencephalography (MEG). Specifically, MEG recordings were used to investigate the neural and functional correlates of the pre-attentive ability for detection of deviance, from a statistically learned tone sequence. The effect of long-term musical training in this ability is investigated by means of comparison of MMN in musicians to non-musicians. Both groups (musicians and non-musicians) showed a mismatch negativity (MMN) response to the deviants and this response did not differ amongst them neither in amplitude nor in latency. Another interesting finding of this study is that both groups revealed a significant difference between the standards and the deviants in the response of P50 and this difference was significantly larger in the group of musicians. The increase of this difference in the group of musicians underlies that intensive, specialized and long term exercise can enhance the ability of the auditory cortex to discriminate new auditory events from previously learned ones according to transitional probabilities. A behavioral discrimination task between the standard and the deviant sequences followed the MEG measurement. The behavioral results indicated that the detection of deviance was not explicitly learned by either group, probably due to the lack of attentional resources. These findings provide valuable insights on the functional architecture of statistical learning.


PLOS ONE | 2012

Evidence for Training-Induced Plasticity in Multisensory Brain Structures: An MEG Study

Evangelos Paraskevopoulos; Anja Kuchenbuch; Sibylle C. Herholz; Christo Pantev

Multisensory learning and resulting neural brain plasticity have recently become a topic of renewed interest in human cognitive neuroscience. Music notation reading is an ideal stimulus to study multisensory learning, as it allows studying the integration of visual, auditory and sensorimotor information processing. The present study aimed at answering whether multisensory learning alters uni-sensory structures, interconnections of uni-sensory structures or specific multisensory areas. In a short-term piano training procedure musically naive subjects were trained to play tone sequences from visually presented patterns in a music notation-like system [Auditory-Visual-Somatosensory group (AVS)], while another group received audio-visual training only that involved viewing the patterns and attentively listening to the recordings of the AVS training sessions [Auditory-Visual group (AV)]. Training-related changes in cortical networks were assessed by pre- and post-training magnetoencephalographic (MEG) recordings of an auditory, a visual and an integrated audio-visual mismatch negativity (MMN). The two groups (AVS and AV) were differently affected by the training. The results suggest that multisensory training alters the function of multisensory structures, and not the uni-sensory ones along with their interconnections, and thus provide an answer to an important question presented by cognitive models of multisensory training.


Journal of Cognitive Neuroscience | 2014

Multisensory integration during short-term music reading training enhances both uni-and multisensory cortical processing

Evangelos Paraskevopoulos; Anja Kuchenbuch; Sibylle C. Herholz; Christo Pantev

The human ability to integrate the input of several sensory systems is essential for building a meaningful interpretation out of the complexity of the environment. Training studies have shown that the involvement of multiple senses during training enhances neuroplasticity, but it is not clear to what extent integration of the senses during training is required for the observed effects. This study intended to elucidate the differential contributions of uni- and multisensory elements of music reading training in the resulting plasticity of abstract audiovisual incongruency identification. We used magnetoencephalography to measure the pre- and posttraining cortical responses of two randomly assigned groups of participants that followed either an audiovisual music reading training that required multisensory integration (AV-Int group) or a unisensory training that had separate auditory and visual elements (AV-Sep group). Results revealed a network of frontal generators for the abstract audiovisual incongruency response, confirming previous findings, and indicated the central role of anterior prefrontal cortex in this process. Differential neuroplastic effects of the two types of training in frontal and temporal regions point to the crucial role of multisensory integration occurring during training. Moreover, a comparison of the posttraining cortical responses of both groups to a group of musicians that were tested using the same paradigm revealed that long-term music training leads to significantly greater responses than the short-term training of the AV-Int group in anterior prefrontal regions as well as to significantly greater responses than both short-term training protocols in the left superior temporal gyrus (STG).


PLOS ONE | 2014

Audio-Tactile Integration and the Influence of Musical Training

Anja Kuchenbuch; Evangelos Paraskevopoulos; Sibylle C. Herholz; Christo Pantev

Perception of our environment is a multisensory experience; information from different sensory systems like the auditory, visual and tactile is constantly integrated. Complex tasks that require high temporal and spatial precision of multisensory integration put strong demands on the underlying networks but it is largely unknown how task experience shapes multisensory processing. Long-term musical training is an excellent model for brain plasticity because it shapes the human brain at functional and structural levels, affecting a network of brain areas. In the present study we used magnetoencephalography (MEG) to investigate how audio-tactile perception is integrated in the human brain and if musicians show enhancement of the corresponding activation compared to non-musicians. Using a paradigm that allowed the investigation of combined and separate auditory and tactile processing, we found a multisensory incongruency response, generated in frontal, cingulate and cerebellar regions, an auditory mismatch response generated mainly in the auditory cortex and a tactile mismatch response generated in frontal and cerebellar regions. The influence of musical training was seen in the audio-tactile as well as in the auditory condition, indicating enhanced higher-order processing in musicians, while the sources of the tactile MMN were not influenced by long-term musical training. Consistent with the predictive coding model, more basic, bottom-up sensory processing was relatively stable and less affected by expertise, whereas areas for top-down models of multisensory expectancies were modulated by training.


European Journal of Neuroscience | 2015

Musical expertise is related to neuroplastic changes of multisensory nature within the auditory cortex

Christo Pantev; Evangelos Paraskevopoulos; Anja Kuchenbuch; Yao Lu; Sibylle C. Herholz

Recent neuroscientific evidence indicates that multisensory integration does not only occur in higher level association areas of the cortex as the hierarchical models of sensory perception assumed, but also in regions traditionally thought of as unisensory, such as the auditory cortex. Nevertheless, it is not known whether expertise‐induced neuroplasticity can alter the multisensory processing that occurs in these low‐level regions. The present study used magnetoencephalography to investigate whether musical training may induce neuroplastic changes of multisensory processing within the human auditory cortex. Magnetoencephalography data of four different experiments were used to demonstrate the effect of long‐term and short‐term musical training on the integration of auditory, somatosensory and visual stimuli in the auditory cortex. The cross‐sectional design of three of the experiments allowed us to infer that long‐term musical training is related to a significantly different way of processing multisensory information within the auditory cortex, whereas the short‐term training design of the fourth experiment allowed us to causally infer that multisensory music reading training affects the multimodal processing within the auditory cortex.


PLOS ONE | 2014

Temporal processing of audiovisual stimuli is enhanced in musicians: evidence from magnetoencephalography (MEG).

Yao Lu; Evangelos Paraskevopoulos; Sibylle C. Herholz; Anja Kuchenbuch; Christo Pantev

Numerous studies have demonstrated that the structural and functional differences between professional musicians and non-musicians are not only found within a single modality, but also with regard to multisensory integration. In this study we have combined psychophysical with neurophysiological measurements investigating the processing of non-musical, synchronous or various levels of asynchronous audiovisual events. We hypothesize that long-term multisensory experience alters temporal audiovisual processing already at a non-musical stage. Behaviorally, musicians scored significantly better than non-musicians in judging whether the auditory and visual stimuli were synchronous or asynchronous. At the neural level, the statistical analysis for the audiovisual asynchronous response revealed three clusters of activations including the ACC and the SFG and two bilaterally located activations in IFG and STG in both groups. Musicians, in comparison to the non-musicians, responded to synchronous audiovisual events with enhanced neuronal activity in a broad left posterior temporal region that covers the STG, the insula and the Postcentral Gyrus. Musicians also showed significantly greater activation in the left Cerebellum, when confronted with an audiovisual asynchrony. Taken together, our MEG results form a strong indication that long-term musical training alters the basic audiovisual temporal processing already in an early stage (direct after the auditory N1 wave), while the psychophysical results indicate that musical training may also provide behavioral benefits in the accuracy of the estimates regarding the timing of audiovisual events.


PLOS ONE | 2012

Electromagnetic correlates of musical expertise in processing of tone patterns.

Anja Kuchenbuch; Evangelos Paraskevopoulos; Sibylle C. Herholz; Christo Pantev

Using magnetoencephalography (MEG), we investigated the influence of long term musical training on the processing of partly imagined tone patterns (imagery condition) compared to the same perceived patterns (perceptual condition). The magnetic counterpart of the mismatch negativity (MMNm) was recorded and compared between musicians and non-musicians in order to assess the effect of musical training on the detection of deviants to tone patterns. The results indicated a clear MMNm in the perceptual condition as well as in a simple pitch oddball (control) condition in both groups. However, there was no significant mismatch response in either group in the imagery condition despite above chance behavioral performance in the task of detecting deviant tones. The latency and the laterality of the MMNm in the perceptual condition differed significantly between groups, with an earlier MMNm in musicians, especially in the left hemisphere. In contrast the MMNm amplitudes did not differ significantly between groups. The behavioral results revealed a clear effect of long-term musical training in both experimental conditions. The obtained results represent new evidence that the processing of tone patterns is faster and more strongly lateralized in musically trained subjects, which is consistent with other findings in different paradigms of enhanced auditory neural system functioning due to long-term musical training.


BMC Neuroscience | 2013

Effects of musical training and event probabilities on encoding of complex tone patterns

Anja Kuchenbuch; Evangelos Paraskevopoulos; Sibylle C. Herholz; Christo Pantev

BackgroundThe human auditory cortex automatically encodes acoustic input from the environment and differentiates regular sound patterns from deviant ones in order to identify important, irregular events. The Mismatch Negativity (MMN) response is a neuronal marker for the detection of sounds that are unexpected, based on the encoded regularities. It is also elicited by violations of more complex regularities and musical expertise has been shown to have an effect on the processing of complex regularities. Using magnetoencephalography (MEG), we investigated the MMN response to salient or less salient deviants by varying the standard probability (70%, 50% and 35%) of a pattern oddball paradigm. To study the effects of musical expertise in the encoding of the patterns, we compared the responses of a group of non-musicians to those of musicians.ResultsWe observed significant MMN in all conditions, including the least salient condition (35% standards), in response to violations of the predominant tone pattern for both groups. The amplitude of MMN from the right hemisphere was influenced by the standard probability. This effect was modulated by long-term musical training: standard probability changes influenced MMN amplitude in the group of non-musicians only.ConclusionThis study indicates that pattern violations are detected automatically, even if they are of very low salience, both in non-musicians and musicians, with salience having a stronger impact on processing in the right hemisphere of non-musicians. Long-term musical training influences this encoding, in that non-musicians benefit to a greater extent from a good signal-to-noise ratio (i.e. high probability of the standard pattern), while musicians are less dependent on the salience of an acoustic environment.


Human Brain Mapping | 2014

Tones and numbers: a combined EEG-MEG study on the effects of musical expertise in magnitude comparisons of audiovisual stimuli.

Evangelos Paraskevopoulos; Anja Kuchenbuch; Sibylle C. Herholz; Nikolaos Foroglou; Christo Pantev

This study investigated the cortical responses underlying magnitude comparisons of multisensory stimuli and examined the effect that musical expertise has in this process. The comparative judgments were based on a newly learned rule binding the auditory and visual stimuli within the context of magnitude comparisons: “the higher the pitch of the tone, the larger the number presented.” The cortical responses were measured by simultaneous MEG\EEG recordings and a combined source analysis with individualized realistic head models was performed. Musical expertise effects were investigated by comparing musicians to non‐musicians. Congruent audiovisual stimuli, corresponding to the newly learned rule, elicited activity in frontotemporal and occipital areas. In contrast, incongruent stimuli activated temporal and parietal regions. Musicians when compared with nonmusicians showed increased differences between congruent and incongruent stimuli in a prefrontal region, thereby indicating that music expertise may affect multisensory comparative judgments within a generalized representation of analog magnitude. Hum Brain Mapp 35:5389–5400, 2014.

Collaboration


Dive into the Anja Kuchenbuch's collaboration.

Top Co-Authors

Avatar

Evangelos Paraskevopoulos

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sibylle C. Herholz

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Sibylle C. Herholz

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Nikolaos Foroglou

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Yao Lu

University of Münster

View shared research outputs
Researchain Logo
Decentralizing Knowledge