Anja M. Billing
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anja M. Billing.
Genome Biology | 2014
Valerie Blanc; Eddie Park; Sabine Schaefer; Melanie Miller; Yiing Lin; Susan Kennedy; Anja M. Billing; Hisham Ben Hamidane; Johannes Graumann; Ali Mortazavi; Joseph H. Nadeau; Nicholas O. Davidson
BackgroundRNA editing encompasses a post-transcriptional process in which the genomically templated sequence is enzymatically altered and introduces a modified base into the edited transcript. Mammalian C-to-U RNA editing represents a distinct subtype of base modification, whose prototype is intestinal apolipoprotein B mRNA, mediated by the catalytic deaminase Apobec-1. However, the genome-wide identification, tissue-specificity and functional implications of Apobec-1-mediated C-to-U RNA editing remain incompletely explored.ResultsDeep sequencing, data filtering and Sanger-sequence validation of intestinal and hepatic RNA from wild-type and Apobec-1-deficient mice revealed 56 novel editing sites in 54 intestinal mRNAs and 22 novel sites in 17 liver mRNAs, all within 3′ untranslated regions. Eleven of 17 liver RNAs shared editing sites with intestinal RNAs, while 6 sites are unique to liver. Changes in RNA editing lead to corresponding changes in intestinal mRNA and protein levels for 11 genes. Analysis of RNA editing in vivo following tissue-specific Apobec-1 adenoviral or transgenic Apobec-1 overexpression reveals that a subset of targets identified in wild-type mice are restored in Apobec-1-deficient mouse intestine and liver following Apobec-1 rescue. We find distinctive polysome profiles for several RNA editing targets and demonstrate novel exonic editing sites in nuclear preparations from intestine but not hepatic apolipoprotein B RNA. RNA editing is validated using cell-free extracts from wild-type but not Apobec-1-deficient mice, demonstrating that Apobec-1 is required.ConclusionsThese studies define selective, tissue-specific targets of Apobec-1-dependent RNA editing and show the functional consequences of editing are both transcript- and tissue-specific.
Scientific Reports | 2016
Anja M. Billing; Hisham Ben Hamidane; Shaima S. Dib; Richard J. Cotton; Aditya M. Bhagwat; Pankaj Kumar; Shahina Hayat; Noha A. Yousri; Neha Goswami; Karsten Suhre; Arash Rafii; Johannes Graumann
Mesenchymal stem cells (MSC) are multipotent cells with great potential in therapy, reflected by more than 500 MSC-based clinical trials registered with the NIH. MSC are derived from multiple tissues but require invasive harvesting and imply donor-to-donor variability. Embryonic stem cell-derived MSC (ESC-MSC) may provide an alternative, but how similar they are to ex vivo MSC is unknown. Here we performed an in depth characterization of human ESC-MSC, comparing them to human bone marrow-derived MSC (BM-MSC) as well as human embryonic stem cells (hESC) by transcriptomics (RNA-seq) and quantitative proteomics (nanoLC-MS/MS using SILAC). Data integration highlighted and validated a central role of vesicle-mediated transport and exosomes in MSC biology and also demonstrated, through enrichment analysis, their versatility and broad application potential. Particular emphasis was placed on comparing profiles between ESC-MSC and BM-MSC and assessing their equivalency. Data presented here shows that differences between ESC-MSC and BM-MSC are similar in magnitude to those reported for MSC of different origin and the former may thus represent an alternative source for therapeutic applications. Finally, we report an unprecedented coverage of MSC CD markers, as well as membrane associated proteins which may benefit immunofluorescence-based applications and contribute to a refined molecular description of MSC.
Journal of Biological Chemistry | 2016
Houari Abdesselem; Aisha Madani; Ahmad Hani; Muna N. Al-Noubi; Neha Goswami; Hisham Ben Hamidane; Anja M. Billing; Jennifer Pasquier; Michael S. Bonkowski; Najeeb Halabi; Rajaa Saleh Dalloul; Mohamed Z. Sheriff; Nasrin Mesaeli; Mohamed A. Elrayess; David A. Sinclair; Johannes Graumann; Nayef Mazloum
The expansion of fat mass in the obese state is due to increased adipocyte hypertrophy and hyperplasia. The molecular mechanism that drives adipocyte hyperplasia remains unknown. The NAD+-dependent protein deacetylase sirtuin 1 (SIRT1), a key regulator of mammalian metabolism, maintains proper metabolic functions in many tissues, counteracting obesity. Here we report that differentiated adipocytes are hyperplastic when SIRT1 is knocked down stably in mouse 3T3-L1 preadipocytes. This phenotype is associated with dysregulated adipocyte metabolism and enhanced inflammation. We also demonstrate that SIRT1 is a key regulator of proliferation in preadipocytes. Quantitative proteomics reveal that the c-Myc pathway is altered to drive enhanced proliferation in SIRT1-silenced 3T3-L1 cells. Moreover, c-Myc is hyperacetylated, levels of p27 are reduced, and cyclin-dependent kinase 2 (CDK2) is activated upon SIRT1 reduction. Remarkably, differentiating SIRT1-silenced preadipocytes exhibit enhanced mitotic clonal expansion accompanied by reduced levels of p27 as well as elevated levels of CCAAT/enhancer-binding protein β (C/EBPβ) and c-Myc, which is also hyperacetylated. c-Myc activation and enhanced proliferation phenotype are also found to be SIRT1-dependent in proliferating mouse embryonic fibroblasts and differentiating human SW872 preadipocytes. Reducing both SIRT1 and c-Myc expression in 3T3-L1 cells simultaneously does not induce the adipocyte hyperplasia phenotype, confirming that SIRT1 controls adipocyte hyperplasia through c-Myc regulation. A better understanding of the molecular mechanisms of adipocyte hyperplasia will open new avenues toward understanding obesity.
Journal of Proteome Research | 2013
Albert Ryszard Liberski; Muna N. Al-Noubi; Zahra H. Rahman; Najeeb Halabi; Shaima S. Dib; Rasha Al-mismar; Anja M. Billing; Roopesh Krishnankutty; Faizzan S. Ahmad; Christophe Raynaud; Arash Rafii; Kasper Engholm-Keller; Johannes Graumann
Metabolic labeling with stable isotopes is a prominent technique for comparative quantitative proteomics, and stable isotope labeling with amino acids in cell culture (SILAC) is the most commonly used approach. SILAC is, however, traditionally limited to simple tissue culture regimens and only rarely employed in the context of complex culturing conditions as those required for human embryonic stem cells (hESCs). Classic hESC culture is based on the use of mouse embryonic fibroblasts (MEFs) as a feeder layer, and as a result, possible xenogeneic contamination, contribution of unlabeled amino acids by the feeders, interlaboratory variability of MEF preparation, and the overall complexity of the culture system are all of concern in conjunction with SILAC. We demonstrate a feeder-free SILAC culture system based on a customized version of a commonly used, chemically defined hESC medium developed by Ludwig et al. and commercially available as mTeSR1 [mTeSR1 is a trade mark of WiCell (Madison, WI) licensed to STEMCELL Technologies (Vancouver, Canada)]. This medium, together with adjustments to the culturing protocol, facilitates reproducible labeling that is easily scalable to the protein amounts required by proteomic work flows. It greatly enhances the usability of quantitative proteomics as a tool for the study of mechanisms underlying hESCs differentiation and self-renewal. Associated data have been deposited to the ProteomeXchange with the identifier PXD000151.
Journal of Proteomics | 2017
Anja M. Billing; Hisham Ben Hamidane; Aditya M. Bhagwat; Richard J. Cotton; Shaima S. Dib; Pankaj Kumar; Shahina Hayat; Neha Goswami; Karsten Suhre; Arash Rafii; Johannes Graumann
Dynamic range limitations are challenging to proteomics, particularly in clinical samples. Affinity proteomics partially overcomes this, yet suffers from dependence on reagent quality. SOMAscan, an aptamer-based platform for over 1000 proteins, avoids that issue using nucleic acid binders. Targets include low expressed proteins not easily accessible by other approaches. Here we report on the potential of SOMAscan for the study of differently sourced mesenchymal stem cells (MSC) in comparison to LC-MS/MS and RNA sequencing. While targeting fewer analytes, SOMAscan displays high precision and dynamic range coverage, allowing quantification of proteins not measured by the other platforms. Expression between cell types (ESC and MSC) was compared across techniques and uncovered the expected large differences. Sourcing was investigated by comparing subtypes: bone marrow-derived, standard in clinical studies, and ESC-derived MSC, thought to hold similar potential but devoid of inter-donor variability and proliferating faster in vitro. We confirmed subtype-equivalency, as well as vesicle and extracellular matrix related processes in MSC. In contrast, the proliferative nature of ESC was captured less by SOMAscan, where nuclear proteins are underrepresented. The complementary of SOMAscan allowed the comprehensive exploration of CD markers and signaling molecules, not readily accessible otherwise and offering unprecedented potential in subtype characterization. SIGNIFICANCE Mesenchymal stem cells (MSC) represent promising stem cell-derived therapeutics as indicated by their application in >500 clinical trials currently registered with the NIH. Tissue-derived MSC require invasive harvesting and imply donor-to-donor differences, to which embryonic stem cell (ESC)-derived MSC may provide an alternative and thus warrant thorough characterization. In continuation of our previous study where we compared in depth embryonic stem cells (ESC) and MSC from two sources (bone marrow and ESC-derived), we included the aptamer-based SOMAscan assay, complementing LC-MS/MS and RNA-seq data. Furthermore, SOMAscan, a targeted proteomics platform developed for analyzing clinical samples, has been benchmarked against established analytical platforms (LC-MS/MS and RNA-seq) using stem cell comparisons as a model.
Current protocols in mouse biology | 2015
Anja M. Billing; Hisham Ben Hamidane; Johannes Graumann
Mass spectrometry–based quantitative proteomics is a powerful method for in‐depth exploration of protein expression, allowing researchers to probe its regulation and study signal‐transduction networks, protein turnover, secretion, and spatial distribution, as well as post‐translational modification and protein‐protein interaction, on a large scale. Precise protein quantitation may be achieved by incorporation of stable isotopes, which introduce a mass shift detectable by mass spectrometry, allowing multiplexing of several samples and therefore relative quantification. Stable isotope incorporation into proteins or peptides can be attained either by metabolic labeling (e.g., SILAC) or by chemical labeling (e.g., reductive dimethylation). Both labeling approaches are presented here. They are straightforward and robust and can be applied to murine samples. While both SILAC and reductive dimethylation offer similar multiplexing capabilities and quantitative accuracy, reductive dimethylation is more versatile and can be used with any sample type.
BioMed Research International | 2015
Pankaj Kumar; Anna Halama; Shahina Hayat; Anja M. Billing; Manish Gupta; Noha A. Yousri; Gregory M. Smith; Karsten Suhre
The number of RNA-Seq studies has grown in recent years. The design of RNA-Seq studies varies from very simple (e.g., two-condition case-control) to very complicated (e.g., time series involving multiple samples at each time point with separate drug treatments). Most of these publically available RNA-Seq studies are deposited in NCBI databases, but their metadata are scattered throughout four different databases: Sequence Read Archive (SRA), Biosample, Bioprojects, and Gene Expression Omnibus (GEO). Although the NCBI web interface is able to provide all of the metadata information, it often requires significant effort to retrieve study- or project-level information by traversing through multiple hyperlinks and going to another page. Moreover, project- and study-level metadata lack manual or automatic curation by categories, such as disease type, time series, case-control, or replicate type, which are vital to comprehending any RNA-Seq study. Here we describe “MetaRNA-Seq,” a new tool for interactively browsing, searching, and annotating RNA-Seq metadata with the capability of semiautomatic curation at the study level.
Qatar Foundation Annual Research Conference | 2014
Anja M. Billing; Shaima S. Dib; Hisham Ben Hamidane; Neha Goswami; Rasha Al-mismar; Richard J. Cotton; Pankaj Kumar; Shahina Hayat; Jennifer Pasquier; Karsten Suhre; Arash Rafii; Johannes Graumann
Qatar Foundation Annual Research Forum Proceedings | 2012
Shaima S. Dib; Anja M. Billing; Shareef J Antar; Johannes Graumann
Qatar Foundation Annual Research Forum Proceedings | 2012
Albert Ryszard Liberski; Zahra H. Rahman; Muna N. Al-Noubi; Shaima S. Dib; Anja M. Billing; Christophe Raynaud; Jeremie Arash Rafii Tabrizi; Marcella Nunes de Melo Braga; Melanie Schulz; Kasper Engholm-Keller; Martin Røssel Larsen; Johaness Graumann