Anja M. Oelschlegel
Scripps Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anja M. Oelschlegel.
Science | 2010
Jiali Li; Shawn Browning; Sukhvir P. Mahal; Anja M. Oelschlegel; Charles Weissmann
DNA-less Evolution Prions are proteinaceous infectious elements involved in a variety of neurodegenerative diseases, including scrapie in sheep and so-called mad cow disease in cattle. Now Li et al. (p. 869, published online 31 December) show that, when propagated in tissue culture cells, cloned prion populations become diverse by mutational events and can undergo selective amplification. Thus, even though devoid of a coding genome, prions, when propagated under a particular selection regime, can be subject to rapid evolution. When propagated in vitro, prion strains demonstrate adaptability and selection. Prions are infectious proteins consisting mainly of PrPSc, a β sheet–rich conformer of the normal host protein PrPC, and occur in different strains. Strain identity is thought to be encoded by PrPSc conformation. We found that biologically cloned prion populations gradually became heterogeneous by accumulating “mutants,” and selective pressures resulted in the emergence of different mutants as major constituents of the evolving population. Thus, when transferred from brain to cultured cells, “cell-adapted” prions outcompeted their “brain-adapted” counterparts, and the opposite occurred when prions were returned from cells to brain. Similarly, the inhibitor swainsonine selected for a resistant substrain, whereas, in its absence, the susceptible substrain outgrew its resistant counterpart. Prions, albeit devoid of a nucleic acid genome, are thus subject to mutation and selective amplification.
American Journal of Pathology | 2012
Martin Kaatz; Christine Fast; Ute Ziegler; Anne Balkema-Buschmann; Bärbel Hammerschmidt; Markus Keller; Anja M. Oelschlegel; Leila McIntyre; Martin H. Groschup
An experimental oral bovine spongiform encephalopathy (BSE) challenge study was performed to elucidate the route of infectious prions from the gut to the central nervous system in preclinical and clinical infected animals. Tissue samples collected from the gut and the central and autonomic nervous system from animals sacrificed between 16 and 44 months post infection (mpi) were examined for the presence of the pathological prion protein (PrP(Sc)) by IHC. Moreover, parts of these samples were also bioassayed using bovine cellular prion protein (PrP(C)) overexpressing transgenic mice (Tgbov XV) that lack the species barrier for bovine prions. A distinct accumulation of PrP(Sc) was observed in the distal ileum, confined to follicles and/or the enteric nervous system, in almost all animals. BSE prions were found in the sympathetic nervous system starting at 16 mpi, and in the parasympathetic nervous system from 20 mpi. A clear dissociation between prion infectivity and detectable PrP(Sc) deposition became obvious. The earliest presence of infectivity in the brain stem was detected at 24 mpi, whereas PrP(Sc) accumulation was first detected after 28 mpi. In summary, our results decipher the centripetal spread of BSE prions along the autonomic nervous system to the central nervous system, starting already halfway in the incubation time.
Journal of Virology | 2012
Paula Saá; Gian Franco Sferrazza; Gregory Ottenberg; Anja M. Oelschlegel; Kerri Dorsey; Corinne Ida Lasmézas
ABSTRACT Several lines of evidence suggest that various cofactors may be required for prion replication. PrP binds to polyanions, and RNAs were shown to promote the conversion of PrPC into PrPSc in vitro. In the present study, we investigated strain-specific differences in RNA requirement during in vitro conversion and the potential role of RNA as a strain-specifying component of infectious prions. We found that RNase treatment impairs PrPSc-converting activity of 9 murine prion strains by protein misfolding cyclic amplification (PMCA) in a strain-specific fashion. While the addition of RNA restored PMCA conversion efficiency, the effect of synthetic polynucleotides or DNA was strain dependent, showing a different promiscuity of prion strains in cofactor utilization. The biological properties of RML propagated by PMCA under RNA-depleted conditions were compared to those of brain-derived and PMCA material generated in the presence of RNA. Inoculation of RNA-depleted RML in Tga20 mice resulted in an increased incidence of a distinctive disease phenotype characterized by forelimb paresis. However, this abnormal phenotype was not conserved in wild-type mice or upon secondary transmission. Immunohistochemical and cell panel assay analyses of mouse brains did not reveal significant differences between mice injected with the different RML inocula. We conclude that replication under RNA-depleted conditions did not modify RML prion strain properties. Our study cannot, however, exclude small variations of RML properties that would explain the abnormal clinical phenotype observed. We hypothesize that RNA molecules may act as catalysts of prion replication and that variable capacities of distinct prion strains to utilize different cofactors may explain strain-specific dependency upon RNA.
PLOS Pathogens | 2013
Anja M. Oelschlegel; Charles Weissmann
We have reported that properties of prion strains may change when propagated in different environments. For example, when swainsonine-sensitive 22L prions were propagated in PK1 cells in the presence of swainsonine, drug-resistant variants emerged. We proposed that prions constitute quasi- populations comprising a range of variants with different properties, from which the fittest are selected in a particular environment. Prion populations developed heterogeneity even after biological cloning, indicating that during propagation mutation-like processes occur at the conformational level. Because brain-derived 22L prions are naturally swainsonine resistant, it was not too surprising that prions which had become swa sensitive after propagation in cells could revert to drug resistance. Because RML prions, both after propagation in brain or in PK1 cells, are swainsonine sensitive, we investigated whether it was nonetheless possible to select swainsonine-resistant variants by propagation in the presence of the drug. Interestingly, this was not possible with the standard line of PK1 cells, but in certain PK1 sublines not only swainsonine-resistant, but even swainsonine-dependent populations (i.e. that propagated more rapidly in the presence of the drug) could be isolated. Once established, they could be passaged indefinitely in PK1 cells, even in the absence of the drug, without losing swainsonine dependence. The misfolded prion protein (PrPSc) associated with a swainsonine-dependent variant was less rapidly cleared in PK1 cells than that associated with its drug-sensitive counterpart, indicating that likely structural differences of the misfolded PrP underlie the properties of the prions. In summary, propagation of prions in the presence of an inhibitory drug may not only cause the selection of drug-resistant prions but even of stable variants that propagate more efficiently in the presence of the drug. These adaptations are most likely due to conformational changes of the abnormal prion protein.
PLOS Pathogens | 2012
Sukhvir P. Mahal; Joseph Jablonski; Irena Suponitsky-Kroyter; Anja M. Oelschlegel; Maria Eugenia Herva; Michael B. A. Oldstone; Charles Weissmann
PrPC, a host protein which in prion-infected animals is converted to PrPSc, is linked to the cell membrane by a GPI anchor. Mice expressing PrPC without GPI anchor (tgGPI- mice), are susceptible to prion infection but accumulate anchorless PrPSc extra-, rather than intracellularly. We investigated whether tgGPI− mice could faithfully propagate prion strains despite the deviant structure and location of anchorless PrPSc. We found that RML and ME7, but not 22L prions propagated in tgGPI− brain developed novel cell tropisms, as determined by the Cell Panel Assay (CPA). Surprisingly, the levels of proteinase K-resistant PrPSc (PrPres) in RML- or ME7-infected tgGPI− brain were 25–50 times higher than in wild-type brain. When returned to wild-type brain, ME7 prions recovered their original properties, however RML prions had given rise to a novel prion strain, designated SFL, which remained unchanged even after three passages in wild-type mice. Because both RML PrPSc and SFL PrPSc are stably propagated in wild-type mice we propose that the two conformations are separated by a high activation energy barrier which is abrogated in tgGPI− mice.
Journal of Virology | 2012
Anja M. Oelschlegel; Mohammad Fallahi; Shannon Ortiz-Umpierre; Charles Weissmann
ABSTRACT Three commonly used isolates of murine prions, 79A, 139A, and RML, were derived from the so-called Chandler isolate, which was obtained by propagating prions from scrapie-infected goat brain in mice. RML is widely believed to be identical with 139A; however, using the extended cell panel assay (ECPA), we here show that 139A and RML isolates are distinct, while 79A and RML could not be distinguished. We undertook to clone 79A and 139A prions by endpoint dilution in murine neuroblastoma-derived PK1 cells. Cloned 79A prions, when returned to mouse brain, were unchanged and indistinguishable from RML by ECPA. However, 139A-derived clones, when returned to brain, yielded prions distinct from 139A and similar to 79A and RML. Thus, when 139A prions were transferred to PK1 cells, 79A/RML-like prions, either present as a minor component in the brain 139A population or generated by mutation in the cells, were selected and, after being returned to brain, were the major if not only component of the population.
Journal of General Virology | 2007
Christine Hoffmann; Ute Ziegler; Anne Buschmann; Artur Weber; Leila Kupfer; Anja M. Oelschlegel; Baerbel Hammerschmidt; Martin H. Groschup
PLOS ONE | 2015
Anja M. Oelschlegel; Markus Geissen; Matthias Lenk; Roland Riebe; Marlies Angermann; Hermann Schaetzl; Martin H. Groschup
PLOS ONE | 2015
Anja M. Oelschlegel; Markus Geissen; Matthias Lenk; Roland Riebe; Marlies Angermann; Hermann Schaetzl; Martin H. Groschup
PLOS ONE | 2015
Anja M. Oelschlegel; Markus Geissen; Matthias Lenk; Roland Riebe; Marlies Angermann; Hermann Schaetzl; Martin H. Groschup