Anja Machate
Dresden University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anja Machate.
The Journal of Comparative Neurology | 2012
Julia Ganz; Jan Kaslin; Dorian Freudenreich; Anja Machate; Michaela Geffarth; Michael Brand
The morphology of the telencephalon displays great diversity among different vertebrate lineages. Particularly the everted telencephalon of ray‐finned fishes shows a noticeably different morphology from the evaginated telencephalon of nonray‐finned fishes and other vertebrates. This makes the comparison between the different parts of the telencephalon of ray‐finned fishes and other vertebrates difficult. Based on neuroanatomical, neurochemical, and connectional data no consensus on the subdivisions of the adult telencephalon of ray‐finned fishes and their relation to nuclei in the telencephalon of other vertebrates has been reached yet. For tetrapods, comparative expression pattern analysis of homologous developmental genes has been a successful approach to clarify homologies between different parts of the telencephalon. In the larval zebrafish, subdivisions of the subpallium have been proposed using conserved developmental gene expression. In this study, we investigate the subdivisions of the adult zebrafish telencephalon by analyzing the expression pattern of conserved molecular marker genes. We identify the boundary between the pallium and subpallium based on the complementary expression of dlx2a, dlx5a in the subpallium and tbr1, neurod in the pallium. Furthermore, combinatorial expression of Isl, nkx2.1b, lhx1b, tbr1, eomesa, emx1, emx2, and emx3 identifies striatal‐like, pallidal‐like, and septal‐like subdivisions within the subpallium. In contrast to previous models, we propose that the striatum and pallidum are stretched along the rostrocaudal axis of the telencephalon. Further, the septal nuclei derive from both the pallium and subpallium. On this basis, we present a new model for the subdivisions of the subpallium in teleost fish. J. Comp. Neurol. 520:633–655, 2012.
Developmental Dynamics | 2011
Stefan Hans; Dorian Freudenreich; Michaela Geffarth; Jan Kaslin; Anja Machate; Michael Brand
Cre‐mediated site‐specific recombination has emerged as an indispensable tool for the precise manipulation of the mammalian genome. Recently, we showed that Cre is also highly efficient in zebrafish and temporal control of recombination can be achieved by using the ligand‐inducible CreERT2. Previous attempts have been made to control recombination by using the temperature inducible hsp70l promoter to conditionally drive the expression of Cre or EGFP‐Cre, respectively. However, in this study we demonstrate that the hsp70l promoter possesses a basal leakiness resulting in Cre‐mediated recombination even at permissive temperatures. In order to prevent non‐conditional recombination, we combined the hsp70l promoter with a mCherry‐tagged ligand‐inducible CreERT2. At permissive temperatures and in the absence of the ligand tamoxifen (TAM), no non‐conditional recombination is observed indicating tight regulation of CreERT2. Instead, comprehensive site‐specific recombination is mediated following heat induction and administration of TAM. Developmental Dynamics, 2011.
PLOS Biology | 2009
Alexander Picker; Florencia Cavodeassi; Anja Machate; Sabine Bernauer; Stefan Hans; Gembu Abe; Koichi Kawakami; Stephen W. Wilson; Michael Brand
In this Research Article, Picker et al. show how cells in the retina get their spatial coordinates.
Neural Development | 2012
Caghan Kizil; Stefanie Dudczig; Nikos Kyritsis; Anja Machate; Juliane Blaesche; Volker Kroehne; Michael Brand
BackgroundUnlike mammals, zebrafish exhibits extensive neural regeneration after injury in adult stages of its lifetime due to the neurogenic activity of the radial glial cells. However, the genes involved in the regenerative neurogenesis response of the zebrafish brain are largely unknown. Thus, understanding the underlying principles of this regeneration capacity of the zebrafish brain is an interesting research realm that may offer vast clinical ramifications.ResultsIn this paper, we characterized the expression pattern of cxcr5 and analyzed the function of this gene during adult neurogenesis and regeneration of the zebrafish telencephalon. We found that cxcr5 was upregulated transiently in the RGCs and neurons, and the expression in the immune cells such as leukocytes was negligible during both adult neurogenesis and regeneration. We observed that the transgenic misexpression of cxcr5 in the ventricular cells using dominant negative and full-length variants of the gene resulted in altered proliferation and neurogenesis response of the RGCs. When we knocked down cxcr5 using antisense morpholinos and cerebroventricular microinjection, we observed outcomes similar to the overexpression of the dominant negative cxcr5 variant.ConclusionsThus, based on our results, we propose that cxcr5 imposes a proliferative permissiveness to the radial glial cells and is required for differentiation of the RGCs to neurons, highlighting novel roles of cxcr5 in the nervous system of vertebrates. We therefore suggest that cxcr5 is an important cue for ventricular cell proliferation and regenerative neurogenesis in the adult zebrafish telencephalon. Further studies on the role of cxcr5 in mediating neuronal replenishment have the potential to produce clinical ramifications in efforts for regenerative therapeutic applications for human neurological disorders or acute injuries.
Nature Cell Biology | 2011
Matthias Nowak; Anja Machate; Shuizi Rachel Yu; Mansi Gupta; Michael Brand
Forty years ago, it was proposed that during embryonic development and organogenesis, morphogen gradients provide positional information to the individual cells within a tissue leading to specific fate decisions. Recently, much insight has been gained into how such morphogen gradients are formed and maintained; however, which cellular mechanisms govern their interpretation within target tissues remains debated. Here we used in vivo fluorescence correlation spectroscopy and automated image analysis to assess the role of endocytic sorting dynamics on fibroblast growth factor 8 (Fgf8) morphogen gradient interpretation. By interfering with the function of the ubiquitin ligase Cbl, we found an expanded range of Fgf target gene expression and a delay of Fgf8 lysosomal transport. However, the extracellular Fgf8 morphogen gradient remained unchanged, indicating that the observed signalling changes are due to altered gradient interpretation. We propose that regulation of morphogen signalling activity through endocytic sorting allows fast feedback-induced changes in gradient interpretation during the establishment of complex patterns.
PLOS ONE | 2012
Sarah Hochmann; Jan Kaslin; Stefan Hans; Anke Weber; Anja Machate; Michaela Geffarth; Richard Funk; Michael Brand
Fibroblast growth factors (Fgf) are secreted signaling molecules that have mitogenic, patterning, neurotrophic and angiogenic properties. Their importance during embryonic development in patterning and morphogenesis of the vertebrate eye is well known, but less is known about the role of Fgfs in the adult vertebrate retina. To address Fgf function in adult retina, we determined the spatial distribution of components of the Fgf signaling pathway in the adult zebrafish retina. We detected differential expression of Fgf receptors, ligands and downstream Fgf targets within specific retinal layers. Furthermore, we blocked Fgf signaling in the retina, by expressing a dominant negative variant of Fgf receptor 1 conditionally in transgenic animals. After blocking Fgf signaling we observe a fast and progressive photoreceptor degeneration and disorganization of retinal tissue, coupled with cell death in the outer nuclear layer. Following the degeneration of photoreceptors, a profound regeneration response is triggered that starts with proliferation in the inner nuclear layer. Ultimately, rod and cone photoreceptors are regenerated completely. Our study reveals the requirement of Fgf signaling to maintain photoreceptors and for proliferation during regeneration in the adult zebrafish retina.
F1000Research | 2014
Julia Ganz; Volker Kroehne; Dorian Freudenreich; Anja Machate; Michaela Geffarth; Ingo Braasch; Jan Kaslin; Michael Brand
BACKGROUND The telencephalon shows a remarkable structural diversity among vertebrates. In particular, the everted telencephalon of ray-finned fishes has a markedly different morphology compared to the evaginated telencephalon of all other vertebrates. This difference in development has hampered the comparison between different areas of the pallium of ray-finned fishes and the pallial nuclei of all other vertebrates. Various models of homology between pallial subdivisions in ray-finned fishes and the pallial nuclei in tetrapods have been proposed based on connectional, neurochemical, gene expression and functional data. However, no consensus has been reached so far. In recent years, the analysis of conserved developmental marker genes has assisted the identification of homologies for different parts of the telencephalon among several tetrapod species. RESULTS We have investigated the gene expression pattern of conserved marker genes in the adult zebrafish ( Danio rerio) pallium to identify pallial subdivisions and their homology to pallial nuclei in tetrapods. Combinatorial expression analysis of ascl1a, eomesa, emx1, emx2, emx3, and Prox1 identifies four main divisions in the adult zebrafish pallium. Within these subdivisions, we propose that Dm is homologous to the pallial amygdala in tetrapods and that the dorsal subdivision of Dl is homologous to part of the hippocampal formation in mouse. We have complemented this analysis be examining the gene expression of emx1, emx2 and emx3 in the zebrafish larval brain. CONCLUSIONS Based on our gene expression data, we propose a new model of subdivisions in the adult zebrafish pallium and their putative homologies to pallial nuclei in tetrapods. Pallial nuclei control sensory, motor, and cognitive functions, like memory, learning and emotion. The identification of pallial subdivisions in the adult zebrafish and their homologies to pallial nuclei in tetrapods will contribute to the use of the zebrafish system as a model for neurobiological research and human neurodegenerative diseases.
Development | 2015
Alessio Paolini; Anne-Laure Duchemin; Shahad Albadri; Eva Patzel; Dorothee Bornhorst; Paula González Avalos; Steffen Lemke; Anja Machate; Michael Brand; Saadettin Sel; Vincenzo Di Donato; Filippo Del Bene; Flavio R. Zolessi; Mirana Ramialison; Lucia Poggi
Divisions that generate one neuronal lineage-committed and one self-renewing cell maintain the balance of proliferation and differentiation for the generation of neuronal diversity. The asymmetric inheritance of apical domains and components of the cell division machinery has been implicated in this process, and might involve interactions with cell fate determinants in regulatory feedback loops of an as yet unknown nature. Here, we report the dynamics of Anillin – an essential F-actin regulator and furrow component – and its contribution to progenitor cell divisions in the developing zebrafish retina. We find that asymmetrically dividing retinal ganglion cell progenitors position the Anillin-rich midbody at the apical domain of the differentiating daughter. anillin hypomorphic conditions disrupt asymmetric apical domain inheritance and affect daughter cell fate. Consequently, the retinal cell type composition is profoundly affected, such that the ganglion cell layer is dramatically expanded. This study provides the first in vivo evidence for the requirement of Anillin during asymmetric neurogenic divisions. It also provides insights into a reciprocal regulation between Anillin and the ganglion cell fate determinant Ath5, suggesting a mechanism whereby the balance of proliferation and differentiation is accomplished during progenitor cell divisions in vivo. Highlighted article: The cytokinesis protein Anillin regulates asymmetric cell division in the zebrafish retina, promoting progenitor renewal and influencing retinal ganglion cell differentiation.
Frontiers in Neuroanatomy | 2017
Gokul Kesavan; Avinash Chekuru; Anja Machate; Michael Brand
The midbrain-hindbrain boundary (MHB) acts as an organizer and controls the fate of neighboring cells to develop into either mesencephalic (midbrain) or metencephalic (hindbrain) cells by secreting signaling molecules like Wnt1 and Fgf8. The zebrafish is an excellent vertebrate model for studying MHB development due to the ease of gene manipulation and the possibility of following cellular dynamics and morphogenetic processes using live imaging. Currently, only very few reporter and/or Cre-driver lines are available to study gene expression at the MHB, hampering the understanding of MHB development, and traditional transgenic technologies using promoter/enhancer fragments or bacterial artificial chromosome (BAC)-mediated transgenesis often do not faithfully recapitulate endogenous expression patterns. In contrast, CRISPR/Cas9-mediated genome editing technology now provides a great opportunity to efficiently knock-in or knock-out genes. We have generated four CRISPR/Cas9-based knock-in fluorescent reporter lines for two crucial genes involved in MHB development, namely otx2 and pax2a. The coding sequences of the reporters were knocked-in upstream of the corresponding ATG and are, thus, under the control of the endogenous promoter/enhancer elements. Interestingly, this strategy does not disturb endogenous gene expression. Using the fast maturing fluorescent protein reporter, Venus, enabled us to follow MHB development using cell tracking and live imaging. In addition, we show that these reporter lines label various neuronal and glial cell types in the adult zebrafish brain, making them highly suitable for investigating embryonic and adult midbrain, hindbrain, and MHB development.
Genesis | 2016
Peggy Jungke; Stefan Hans; Mansi Gupta; Anja Machate; Daniela Zöller; Michael Brand
Gene trapping has emerged as a valuable tool to create conditional alleles in various model organisms. Here we report the FLEx‐based gene trap vector SAGFLEx that allows the generation of conditional mutations in zebrafish by gene‐trap mutagenesis. The SAGFLEx gene‐trap cassette comprises the rabbit β‐globin splice acceptor and the coding sequence of GFP, flanked by pairs of inversely oriented heterotypic target sites for the site‐specific recombinases Cre and Flp. Insertion of the gene‐trap cassette into endogenous genes can result in conditional mutations that are stably inverted by Cre and Flp, respectively. To test the functionality of this system we performed a pilot screen and analyzed the insertion of the gene‐trap cassette into the lima1a gene locus. In this lima1a allele, GFP expression faithfully recapitulated the endogenous lima1a expression and resulted in a complete knockout of the gene in homozygosity. Application of either Cre or Flp was able to mediate the stable inversion of the gene trap cassette and showed the ability to conditionally rescue or reintroduce the gene inactivation. Combined with pharmacologically inducible site specific recombinases the SAGFLEx vector insertions will enable precise conditional knockout studies in a spatial‐ and temporal‐controlled manner. genesis 54:19–28, 2016.