Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anja Rabijns is active.

Publication


Featured researches published by Anja Rabijns.


Nature Structural & Molecular Biology | 2002

A structural basis for the unique binding features of the human vitamin D-binding protein.

Christel Verboven; Anja Rabijns; Marc De Maeyer; Hugo Van Baelen; Roger Bouillon; Camiel J. De Ranter

The human serum vitamin D-binding protein (DBP) has many physiologically important functions, ranging from transporting vitamin D3 metabolites, binding and sequestering globular actin and binding fatty acids to functioning in the immune system. Here we report the 2.3 Å crystal structure of DBP in complex with 25-hydroxyvitamin D3, a vitamin D3 metabolite, which reveals the vitamin D-binding site in the N-terminal part of domain I. To more explicitly explore this, we also studied the structure of DBP in complex with a vitamin D3 analog. Comparisons with the structure of human serum albumin, another family member, reveal a similar topology but also significant differences in overall, as well as local, folding. These observed structural differences explain the unique vitamin D3-binding property of DBP.


Journal of Experimental Botany | 2009

Structural insights into glycoside hydrolase family 32 and 68 enzymes: functional implications

Willem Lammens; Katrien Le Roy; Lindsey Schroeven; André Van Laere; Anja Rabijns; Wim Van den Ende

Glycoside hydrolases (GH) have been shown to play unique roles in various biological processes like the biosynthesis of glycans, cell wall metabolism, plant defence, signalling, and the mobilization of storage reserves. To date, GH are divided into more than 100 families based upon their overall structure. GH32 and GH68 are combined in clan GH-J, not only harbouring typical hydrolases but also non-Leloir type transferases (fructosyltransferases), involved in fructan biosynthesis. This review summarizes the recent structure-function research progress on plant GH32 enzymes, and highlights the similarities and differences compared with the microbial GH32 and GH68 enzymes. A profound analysis of ligand-bound structures and site-directed mutagenesis experiments identified key residues in substrate (or inhibitor) binding and recognition. In particular, sucrose can bind as inhibitor in Cichorium intybus 1-FEH IIa, whereas it binds as substrate in Bacillus subtilis levansucrase and Arabidopsis thaliana cell wall invertase (AtcwINV1). In plant GH32, a single residue, the equivalent of Asp239 in AtcwINV1, appears to be important for sucrose stabilization in the active site and essential in determining sucrose donor specificity.


Journal of Biological Chemistry | 2004

Structural Basis for Inhibition of Aspergillus niger Xylanase by Triticum aestivum Xylanase Inhibitor-I

Stefaan Sansen; Camiel J. De Ranter; Kurt Gebruers; Kristof Brijs; Christophe M. Courtin; Jan A. Delcour; Anja Rabijns

Plants developed a diverse battery of defense mechanisms in response to continual challenges by a broad spectrum of pathogenic microorganisms. Their defense arsenal includes inhibitors of cell wall-degrading enzymes, which hinder a possible invasion and colonization by antagonists. The structure of Triticum aestivum xylanase inhibitor-I (TAXI-I), a first member of potent TAXI-type inhibitors of fungal and bacterial family 11 xylanases, has been determined to 1.7-Å resolution. Surprisingly, TAXI-I displays structural homology with the pepsin-like family of aspartic proteases but is proteolytically nonfunctional, because one or more residues of the essential catalytical triad are absent. The structure of the TAXI-I·Aspergillus niger xylanase I complex, at a resolution of 1.8 Å, illustrates the ability of tight binding and inhibition with subnanomolar affinity and indicates the importance of the C-terminal end for the differences in xylanase specificity among different TAXI-type inhibitors.


Plant Physiology | 2007

Unraveling the Difference between Invertases and Fructan Exohydrolases: A Single Amino Acid (Asp-239) Substitution Transforms Arabidopsis Cell Wall Invertase1 into a Fructan 1-Exohydrolase

Katrien Le Roy; Willem Lammens; Maureen Verhaest; Barbara De Coninck; Anja Rabijns; André Van Laere; Wim Van den Ende

Plant cell wall invertases and fructan exohydrolases (FEHs) are very closely related enzymes at the molecular and structural level (family 32 of glycoside hydrolases), but they are functionally different and are believed to fulfill distinct roles in plants. Invertases preferentially hydrolyze the glucose (Glc)-fructose (Fru) linkage in sucrose (Suc), whereas plant FEHs have no invertase activity and only split terminal Fru-Fru linkages in fructans. Recently, the three-dimensional structures of Arabidopsis (Arabidopsis thaliana) cell wall Invertase1 (AtcwINV1) and chicory (Cichorium intybus) 1-FEH IIa were resolved. Until now, it remained unknown which amino acid residues determine whether Suc or fructan is used as a donor substrate in the hydrolysis reaction of the glycosidic bond. In this article, we present site-directed mutagenesis-based data on AtcwINV1 showing that the aspartate (Asp)-239 residue fulfills an important role in both binding and hydrolysis of Suc. Moreover, it was found that the presence of a hydrophobic zone at the rim of the active site is important for optimal and stable binding of Suc. Surprisingly, a D239A mutant acted as a 1-FEH, preferentially degrading 1-kestose, indicating that plant FEHs lacking invertase activity could have evolved from a cell wall invertase-type ancestor by a few mutational changes. In general, family 32 and 68 enzymes containing an Asp-239 functional homolog have Suc as a preferential substrate, whereas enzymes lacking this homolog use fructans as a donor substrate. The presence or absence of such an Asp-239 homolog is proposed as a reliable determinant to discriminate between real invertases and defective invertases/FEHs.


Biochemical Journal | 2009

Structural analysis of a glycoside hydrolase family 43 arabinoxylan arabinofuranohydrolase in complex with xylotetraose reveals a different binding mechanism compared with other members of the same family.

Elien Vandermarliere; Tine M. Bourgois; Martyn Winn; Steven Van Campenhout; Guido Volckaert; Jan A. Delcour; Sergei V. Strelkov; Anja Rabijns; Christophe M. Courtin

AXHs (arabinoxylan arabinofuranohydrolases) are alpha-L-arabinofuranosidases that specifically hydrolyse the glycosidic bond between arabinofuranosyl substituents and xylopyranosyl backbone residues of arabinoxylan. Bacillus subtilis was recently shown to produce an AXH that cleaves arabinose units from O-2- or O-3-mono-substituted xylose residues: BsAXH-m2,3 (B. subtilis AXH-m2,3). Crystallographic analysis reveals a two-domain structure for this enzyme: a catalytic domain displaying a five-bladed beta-propeller fold characteristic of GH (glycoside hydrolase) family 43 and a CBM (carbohydrate-binding module) with a beta-sandwich fold belonging to CBM family 6. Binding of substrate to BsAXH-m2,3 is largely based on hydrophobic stacking interactions, which probably allow the positional flexibility needed to hydrolyse both arabinose substituents at the O-2 or O-3 position of the xylose unit. Superposition of the BsAXH-m2,3 structure with known structures of the GH family 43 exo-acting enzymes, beta-xylosidase and alpha-L-arabinanase, each in complex with their substrate, reveals a different orientation of the sugar backbone.


Biochemical Journal | 2008

Crystallographic analysis shows substrate binding at the -3 to +1 active-site subsites and at the surface of glycoside hydrolase family 11 endo-1,4-beta-xylanases.

Elien Vandermarliere; Tine M. Bourgois; Sigrid Rombouts; Steven Van Campenhout; Guido Volckaert; Sergei V. Strelkov; Jan A. Delcour; Anja Rabijns; Christophe M. Courtin

GH 11 (glycoside hydrolase family 11) xylanases are predominant enzymes in the hydrolysis of heteroxylan, an abundant structural polysaccharide in the plant cell wall. To gain more insight into the protein-ligand interactions of the glycone as well as the aglycone subsites of these enzymes, catalytically incompetent mutants of the Bacillus subtilis and Aspergillus niger xylanases were crystallized, soaked with xylo-oligosaccharides and subjected to X-ray analysis. For both xylanases, there was clear density for xylose residues in the -1 and -2 subsites. In addition, for the B. subtilis xylanase, there was also density for xylose residues in the -3 and +1 subsite showing the spanning of the -1/+1 subsites. These results, together with the observation that some residues in the aglycone subsites clearly adopt a different conformation upon substrate binding, allowed us to identify the residues important for substrate binding in the aglycone subsites. In addition to substrate binding in the active site of the enzymes, the existence of an unproductive second ligand-binding site located on the surface of both the B. subtilis and A. niger xylanases was observed. This extra binding site may have a function similar to the separate carbohydrate-binding modules of other glycoside hydrolase families.


Acta Crystallographica Section D-biological Crystallography | 2006

X-ray diffraction structure of a cell-wall invertase from Arabidopsis thaliana

Maureen Verhaest; Willem Lammens; K. Le Roy; B. De Coninck; C. J. De Ranter; A. Van Laere; W. Van den Ende; Anja Rabijns

Cell-wall invertases play crucial roles during plant development. They hydrolyse sucrose into its fructose and glucose subunits by cleavage of the alpha1-beta2 glycosidic bond. Here, the structure of the Arabidopsis thaliana cell-wall invertase 1 (AtcwINV1; gene accession code At3g13790) is described at a resolution of 2.15 A. The structure comprises an N-terminal fivefold beta-propeller domain followed by a C-terminal domain formed by two beta-sheets. The active site is positioned in the fivefold beta-propeller domain, containing the nucleophile Asp23 and the acid/base catalyst Glu203 of the double-displacement enzymatic reaction. The function of the C-terminal domain remains unknown. Unlike in other GH 32 family enzyme structures known to date, in AtcwINV1 the cleft formed between both domains is blocked by Asn299-linked carbohydrates. A preliminary site-directed mutagenesis experiment (Asn299Asp) removed the glycosyl chain but did not alter the activity profile of the enzyme.


Journal of Molecular Biology | 2008

Crystal Structures of Arabidopsis thaliana Cell-Wall Invertase Mutants in Complex with Sucrose

Willem Lammens; Katrien Le Roy; André Van Laere; Anja Rabijns; Wim Van den Ende

In plants, cell-wall invertases fulfil important roles in carbohydrate partitioning, growth, development and crop yield. In this study, we report on different X-ray crystal structures of Arabidopsis thaliana cell-wall invertase 1 (AtcwINV1) mutants with sucrose. These structures reveal a detailed view of sucrose binding in the active site of the wild-type AtcwINV1. Compared to related enzyme-sucrose complexes, important differences in the orientation of the glucose subunit could be observed. The structure of the E203Q AtcwINV1 mutant showed a complete new binding modus, whereas the D23A, E203A and D239A structures most likely represent the productive binding modus. Together with a hydrophobic zone formed by the conserved W20, W47 and W82, the residues N22, D23, R148, E203, D149 and D239 are necessary to create the ideal sucrose-binding pocket. D239 can interact directly with the glucose moiety of sucrose, whereas K242 has an indirect role in substrate stabilization. Most probably, K242 keeps D239 in a favourable position upon substrate binding. Unravelling the exact position of sucrose in plant cell-wall invertases is a necessary step towards the rational design of superior invertases to further increase crop yield and biomass production.


FEBS Journal | 2005

His374 of wheat endoxylanase inhibitor TAXI-I stabilizes complex formation with glycoside hydrolase family 11 endoxylanases

Katleen Fierens; Ann Gils; Stefaan Sansen; Kristof Brijs; Christophe M. Courtin; Paul Declerck; Camiel J. De Ranter; Kurt Gebruers; Anja Rabijns; Johan Robben; Steven Van Campenhout; Guido Volckaert; Jan A. Delcour

Wheat endoxylanase inhibitor TAXI‐I inhibits microbial glycoside hydrolase family 11 endoxylanases. Crystallographic data of an Aspergillus niger endoxylanase‐TAXI‐I complex showed His374 of TAXI‐I to be a key residue in endoxylanase inhibition [Sansen S, De Ranter CJ, Gebruers K, Brijs K, Courtin CM, Delcour JA & Rabijns A (2004) J Biol Chem 279, 36022–36028]. Its role in enzyme–inhibitor interaction was further investigated by site‐directed mutagenesis of His374 into alanine, glutamine or lysine. Binding kinetics and affinities of the molecular interactions between A. niger, Bacillus subtilis, Trichoderma longibrachiatumendoxylanases and wild‐type TAXI‐I and TAXI‐I His374 mutants were determined by surface plasmon resonance analysis. Enzyme–inhibitor binding was in accordance with a simple 1 : 1 binding model. Association and dissociation rate constants of wild‐type TAXI‐I towards the endoxylanases were in the range between 1.96 and 36.1 × 104m−1·s−1 and 0.72–3.60 × 10−4·s−1, respectively, resulting in equilibrium dissociation constants in the low nanomolar range. Mutation of TAXI‐I His374 to a variable degree reduced the inhibition capacity of the inhibitor mainly due to higher complex dissociation rate constants (three‐ to 80‐fold increase). The association rate constants were affected to a smaller extent (up to eightfold decrease). Substitution of TAXI‐I His374 therefore strongly affects the affinity of the inhibitor for the enzymes. In addition, the results show that His374 plays a critical role in the stabilization of the endoxylanase–TAXI‐I complex rather than in the docking of inhibitor onto enzyme.


Acta Crystallographica Section D-biological Crystallography | 2003

Actin-DBP: the perfect structural fit?

Christel Verboven; Ilse Bogaerts; Etienne Waelkens; Anja Rabijns; Hugo Van Baelen; Roger Bouillon; Camiel J. De Ranter

The multifunctional vitamin D binding protein (DBP) is an actin-sequestering protein present in blood. The crystal structure of the actin-DBP complex was determined at 2.4 A resolution. DBP binds to actin subdomains 1 and 3 and occludes the cleft at the interface between these subdomains. Most remarkably, DBP demonstrates an unusually large actin-binding interface, far exceeding the binding-interface areas reported for other actin-binding proteins such as profilin, DNase I and gelsolin. The fast-growing side of actin monomers is blocked completely through a perfect structural fit with DBP, demonstrating how DBP effectively interferes with actin-filament formation. It establishes DBP as the hitherto best actin-sequestering protein and highlights its key role in suppressing and preventing extracellular actin polymerization.

Collaboration


Dive into the Anja Rabijns's collaboration.

Top Co-Authors

Avatar

Camiel J. De Ranter

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Christel Verboven

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

C. J. De Ranter

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Christophe M. Courtin

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jan A. Delcour

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Stefaan Sansen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Kurt Gebruers

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Katrien Le Roy

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Willem Lammens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Wim Van den Ende

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge