Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anja Schneider is active.

Publication


Featured researches published by Anja Schneider.


Plant Physiology | 2003

ARAMEMNON, a Novel Database for Arabidopsis Integral Membrane Proteins

Rainer Schwacke; Anja Schneider; Eric van der Graaff; Karsten Fischer; Elisabetta Catoni; Marcelo Desimone; Wolf B. Frommer; Ulf-Ingo Flügge; Reinhard Kunze

A specialized database (DB) for Arabidopsis membrane proteins, ARAMEMNON, was designed that facilitates the interpretation of gene and protein sequence data by integrating features that are presently only available from individual sources. Using several publicly available prediction programs, putative integral membrane proteins were identified among the approximately 25,500 proteins in the Arabidopsis genome DBs. By averaging the predictions from seven programs, approximately 6,500 proteins were classified as transmembrane (TM) candidate proteins. Some 1,800 of these contain at least four TM spans and are possibly linked to transport functions. The ARAMEMNON DB enables direct comparison of the predictions of seven different TM span computation programs and the predictions of subcellular localization by eight signal peptide recognition programs. A special function displays the proteins related to the query and dynamically generates a protein family structure. As a first set of proteins from other organisms, all of the approximately 700 putative membrane proteins were extracted from the genome of the cyanobacterium Synechocystis sp. and incorporated in the ARAMEMNON DB. The ARAMEMNON DB is accessible at the URL http://aramemnon.botanik.uni-koeln.de.


Plant Physiology | 2006

Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence

Eric van der Graaff; Rainer Schwacke; Anja Schneider; Marcelo Desimone; Ulf-Ingo Flügge; Reinhard Kunze

A comparative transcriptome analysis for successive stages of Arabidopsis (Arabidopsis thaliana) developmental leaf senescence (NS), darkening-induced senescence of individual leaves attached to the plant (DIS), and senescence in dark-incubated detached leaves (DET) revealed many novel senescence-associated genes with distinct expression profiles. The three senescence processes share a high number of regulated genes, although the overall number of regulated genes during DIS and DET is about 2 times lower than during NS. Consequently, the number of NS-specific genes is much higher than the number of DIS- or DET-specific genes. The expression profiles of transporters (TPs), receptor-like kinases, autophagy genes, and hormone pathways were analyzed in detail. The Arabidopsis TPs and other integral membrane proteins were systematically reclassified based on the Transporter Classification system. Coordinate activation or inactivation of several genes is observed in some TP families in all three or only in individual senescence types, indicating differences in the genetic programs for remobilization of catabolites. Characteristic senescence type-specific differences were also apparent in the expression profiles of (putative) signaling kinases. For eight hormones, the expression of biosynthesis, metabolism, signaling, and (partially) response genes was investigated. In most pathways, novel senescence-associated genes were identified. The expression profiles of hormone homeostasis and signaling genes reveal additional players in the senescence regulatory network.


The Plant Cell | 2009

Arabidopsis STN7 Kinase Provides a Link between Short- and Long-Term Photosynthetic Acclimation

Paolo Pesaresi; Alexander Hertle; Mathias Pribil; Tatjana Kleine; Raik Wagner; Henning Strissel; Anna Ihnatowicz; Vera Bonardi; Michael Scharfenberg; Anja Schneider; Thomas Pfannschmidt; Dario Leister

Flowering plants control energy allocation to their photosystems in response to light quality changes. This includes the phosphorylation and migration of light-harvesting complex II (LHCII) proteins (state transitions or short-term response) as well as long-term alterations in thylakoid composition (long-term response or LTR). Both responses require the thylakoid protein kinase STN7. Here, we show that the signaling pathways triggering state transitions and LTR diverge at, or immediately downstream from, STN7. Both responses require STN7 activity that can be regulated according to the plastoquinone pool redox state. However, LTR signaling does not involve LHCII phosphorylation or any other state transition step. State transitions appear to play a prominent role in flowering plants, and the ability to perform state transitions becomes critical for photosynthesis in Arabidopsis thaliana mutants that are impaired in thylakoid electron transport but retain a functional LTR. Our data imply that STN7-dependent phosphorylation of an as yet unknown thylakoid protein triggers LTR signaling events, whereby an involvement of the TSP9 protein in the signaling pathway could be excluded. The LTR signaling events then ultimately regulate in chloroplasts the expression of photosynthesis-related genes on the transcript level, whereas expression of nuclear-encoded proteins is regulated at multiple levels, as indicated by transcript and protein profiling in LTR mutants.


The Plant Cell | 2005

The Arabidopsis Plastidic Glucose 6-Phosphate/Phosphate Translocator GPT1 Is Essential for Pollen Maturation and Embryo Sac Development

Patrycja Niewiadomski; Silke Knappe; Stefan Geimer; Karsten Fischer; Burkhard Schulz; Ulrike S. Unte; Mario G. Rosso; Peter Ache; Ulf-Ingo Flügge; Anja Schneider

Plastids of nongreen tissues can import carbon in the form of glucose 6-phosphate via the glucose 6-phosphate/phosphate translocator (GPT). The Arabidopsis thaliana genome contains two homologous GPT genes, AtGPT1 and AtGPT2. Both proteins show glucose 6-phosphate translocator activity after reconstitution in liposomes, and each of them can rescue the low-starch leaf phenotype of the pgi1 mutant (which lacks plastid phosphoglucoisomerase), indicating that the two proteins are also functional in planta. AtGPT1 transcripts are ubiquitously expressed during plant development, with highest expression in stamens, whereas AtGPT2 expression is restricted to a few tissues, including senescing leaves. Disruption of GPT2 has no obvious effect on growth and development under greenhouse conditions, whereas the mutations gpt1-1 and gpt1-2 are lethal. In both gpt1 lines, distorted segregation ratios, reduced efficiency of transmission in males and females, and inability to complete pollen and ovule development were observed, indicating profound defects in gametogenesis. Embryo sac development is arrested in the gpt1 mutants at a stage before the fusion of the polar nuclei. Mutant pollen development is associated with reduced formation of lipid bodies and small vesicles and the disappearance of dispersed vacuoles, which results in disintegration of the pollen structure. Taken together, our results indicate that GPT1-mediated import of glucose 6-phosphate into nongreen plastids is crucial for gametophyte development. We suggest that loss of GPT1 function results in disruption of the oxidative pentose phosphate cycle, which in turn affects fatty acid biosynthesis.


BMC Plant Biology | 2003

Expression pattern of a nuclear encoded mitochondrial arginine-ornithine translocator gene from Arabidopsis

Elisabetta Catoni; Marcelo Desimone; Melanie Hilpert; Daniel Wipf; Reinhard Kunze; Anja Schneider; Ulf-Ingo Flügge; Karin Schumacher; Wolf B. Frommer

BackgroundArginine and citrulline serve as nitrogen storage forms, but are also involved in biosynthetic and catabolic pathways. Metabolism of arginine, citrulline and ornithine is distributed between mitochondria and cytosol. For the shuttle of intermediates between cytosol and mitochondria transporters present on the inner mitochondrial membrane are required. Yeast contains a mitochondrial translocator for ornithine and arginine, Ort1p/Arg11p. Ort1p/Arg11p is a member of the mitochondrial carrier family (MCF) essential for ornithine export from mitochondria. The yeast arg11 mutant, which is deficient in Ort1p/Arg11p grows poorly on media lacking arginine.ResultsHigh-level expression of a nuclear encoded Arabidopsis thaliana homolog (AtmBAC2) of Ort1p/Arg11p was able to suppress the growth deficiency of arg11. RT-PCR analysis demonstrated expression of AtmBAC2 in all tissues with highest levels in flowers. Promoter-GUS fusions showed preferential expression in flowers, i.e. pollen, in the vasculature of siliques and in aborted seeds. Variable expression was observed in leaf vasculature. Induction of the promoter was not observed during the first two weeks in seedlings grown on media containing NH4NO3, arginine or ornithine as sole nitrogen sources.ConclusionAtmBAC2 was isolated as a mitochondrial transporter for arginine in Arabidopsis. The absence of expression in developing seeds and in cotyledons of seedlings indicates that other transporters are responsible for storage and mobilization of arginine in seeds.


The Plant Cell | 2002

A Novel Superfamily of Transporters for Allantoin and Other Oxo Derivatives of Nitrogen Heterocyclic Compounds in Arabidopsis

Marcelo Desimone; Elisabetta Catoni; Uwe Ludewig; Melanie Hilpert; Anja Schneider; Reinhard Kunze; Mechthild Tegeder; Wolf B. Frommer; Karin Schumacher

A wide spectrum of soil heterocyclic nitrogen compounds are potential nutrients for plants. Here, it is shown that Arabidopsis plants are able to use allantoin as sole nitrogen source. By functional complementation of a yeast mutant defective in allantoin uptake, an Arabidopsis transporter, AtUPS1 (Arabidopsis thaliana ureide permease 1), was identified. AtUPS1 belongs to a novel superfamily of plant membrane proteins with five open reading frames in Arabidopsis (identity, 64 to 82%). UPS proteins have 10 putative transmembrane domains with a large cytosolic central domain containing a “Walker A” motif. Transport of 14C-labeled allantoin by AtUPS1 in yeast exhibited saturation kinetics (Km ∼ 52 μM), was dependent on Glc and a proton gradient, and was stimulated by acidic pH. AtUPS1 transports uric acid and xanthine, besides allantoin, but not adenine. Protons are cosubstrates in allantoin transport by AtUPS1, as demonstrated by expression in Xenopus laevis oocytes. In plants, AtUPS1 gene expression was dependent on the nitrogen source. Therefore, AtUPS1 presumably is involved in the uptake of allantoin and other purine degradation products when primary sources are limiting.


Plant Physiology | 1997

Expression Patterns and Promoter Activity of the Cold-Regulated Gene ci21A of Potato

Anja Schneider; Francesco Salamini; Christiane Gebhardt

Storage of potato (Solanum tuberosum) tubers at 4[deg]C is associated with the accumulation of several transcripts. DNA sequence analysis of cDNA clone CI21, which corresponds to one of the cold-induced transcripts, revealed high homology to transcripts of tomato (Lycopersicon esculentum) and wild potato (Solanum chacoense) induced by ripening and water stress. Two homologous, nonallelic genes, ci21A and ci21B, were isolated and sequenced. Northern blot analysis showed that CI21 transcripts were present at the highest levels in cold-stored tubers, at lower levels in stems and roots, and at the lowest levels in leaves and tubers stored at room temperature. Treatment with abscisic acid, heat, and a high concentration of salt had no marked effect on CI21 transcript levels in tubers and leaves. Drought was the only stress treatment that induced CI21 transcripts in leaves, but it did not do so in tubers. Western blot analysis detected CI21 protein only in tubers. Chimeric gene constructs between the putative ci21A promoter region and the uidA reporter gene were tested in transgenic potato plants for induction of [beta]-glucuronidase activity by low temperature. A 2-fold increase of [beta]-glucuronidase activity in response to tuber storage at 4[deg]C was observed for fragments between 380 and 2000 bp of the ci21A promoter region.


Plant Biology | 2010

The role of plastidial glucose-6-phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis

Hans-Henning Kunz; Rainer E. Häusler; Joerg Fettke; Karoline Herbst; P. Niewiadomski; Markus Gierth; Kirsten Bell; M. Steup; Ulf-Ingo Flügge; Anja Schneider

Arabidopsis thaliana mutants impaired in starch biosynthesis due to defects in either ADP glucose pyrophosphorylase (adg1-1), plastidic phosphoglucose mutase (pgm) or a new allele of plastidic phosphoglucose isomerase (pgi1-2) exhibit substantial activity of glucose-6-phosphate (Glc6P) transport in leaves that is mediated by a Glc6P/phosphate translocator (GPT) of the inner plastid envelope membrane. In contrast to the wild type, GPT2, one of two functional GPT genes of A. thaliana, is strongly induced in these mutants during the light period. The proposed function of the GPT in plastids of non-green tissues is the provision of Glc6P for starch biosynthesis and/or the oxidative pentose phosphate pathway. The function of GPT in photosynthetic tissues, however, remains obscure. The adg1-1 and pgi1-2 mutants were crossed with the gpt2-1 mutant defective in GPT2. Whereas adg1-1/gpt2-1 was starch-free, residual starch could be detected in pgi1-2/gpt2-1 and was confined to stomatal guard cells, bundle sheath cells and root tips, which parallels the reported spatial expression profile of AtGPT1. Glucose content in the cytosolic heteroglycan increased substantially in adg1-1 but decreased in pgi1-2, suggesting that the plastidic Glc6P pool contributes to its biosynthesis. The abundance of GPT2 mRNA correlates with increased levels of soluble sugars, in particular of glucose in leaves, suggesting induction by the sugar-sensing pathway. The possible function of GPT2 in starch-free mutants is discussed in the background of carbon requirement in leaves during the light-dark cycle.


The Plant Cell | 2016

The Evolutionarily Conserved Protein PHOTOSYNTHESIS AFFECTED MUTANT71 Is Required for Efficient Manganese Uptake at the Thylakoid Membrane in Arabidopsis

Anja Schneider; Iris Steinberger; Andrei Herdean; Chiara Gandini; Marion Eisenhut; Samantha Kurz; Anna Morper; Natalie Hoecker; Thilo Rühle; Mathias Labs; Ulf-Ingo Flügge; Stefan Geimer; Sidsel Birkelund Schmidt; Søren Husted; Andreas P. M. Weber; Cornelia Spetea; Dario Leister

Analysis of an Arabidopsis mutant with a defect in photosystem II reveals that the integral thylakoid membrane protein PAM71 is involved in manganese and calcium homeostasis in the chloroplast. In plants, algae, and cyanobacteria, photosystem II (PSII) catalyzes the light-driven oxidation of water. The oxygen-evolving complex of PSII is a Mn4CaO5 cluster embedded in a well-defined protein environment in the thylakoid membrane. However, transport of manganese and calcium into the thylakoid lumen remains poorly understood. Here, we show that Arabidopsis thaliana PHOTOSYNTHESIS AFFECTED MUTANT71 (PAM71) is an integral thylakoid membrane protein involved in Mn2+ and Ca2+ homeostasis in chloroplasts. This protein is required for normal operation of the oxygen-evolving complex (as evidenced by oxygen evolution rates) and for manganese incorporation. Manganese binding to PSII was severely reduced in pam71 thylakoids, particularly in PSII supercomplexes. In cation partitioning assays with intact chloroplasts, Mn2+ and Ca2+ ions were differently sequestered in pam71, with Ca2+ enriched in pam71 thylakoids relative to the wild type. The changes in Ca2+ homeostasis were accompanied by an increased contribution of the transmembrane electrical potential to the proton motive force across the thylakoid membrane. PSII activity in pam71 plants and the corresponding Chlamydomonas reinhardtii mutant cgld1 was restored by supplementation with Mn2+, but not Ca2+. Furthermore, PAM71 suppressed the Mn2+-sensitive phenotype of the yeast mutant Δpmr1. Therefore, PAM71 presumably functions in Mn2+ uptake into thylakoids to ensure optimal PSII performance.


FEBS Letters | 2005

A transposon-based activation-tagging population in Arabidopsis thaliana (TAMARA) and its application in the identification of dominant developmental and metabolic mutations

Anja Schneider; Thomas Kirch; Tamara Gigolashvili; Hans-Peter Mock; Uwe Sonnewald; Rüdiger Simon; Ulf-Ingo Flügge; Wolfgang Werr

A population of 9471 stable activation‐tagged lines was generated by transposable element mediated activation tagging mutagenesis in Arabidopsis (TAMARA) using the maize En/Spm transposon system. Based on DNA gel blot and flanking sequence analysis, this population contains approximately 6000 independent transposon insertions. A greenhouse‐based screen identified six dominant or semi‐dominant activation tagged mutants with obvious developmental alterations, among these a new pistillata mutant allele. In addition, a subset of 1500 lines was screened by a HPLC based high‐throughput method for dominant activation tagged mutants with enhanced contents of phenolic compounds. One dominant activation tagged mutant (hpc1‐1D) was isolated showing accumulation of a particular compound due to the upregulation of an R2R3‐MYB transcription factor.

Collaboration


Dive into the Anja Schneider's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reinhard Kunze

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolf B. Frommer

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge