Anja Steffen
Dresden University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anja Steffen.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Barbara Ludwig; Andreas Reichel; Anja Steffen; Baruch Zimerman; Andrew V. Schally; Norman L. Block; Clark K. Colton; Stefan Ludwig; Stephan Kersting; Ezio Bonifacio; Michele Solimena; Zohar Gendler; Avi Rotem; Uriel Barkai; Stefan R. Bornstein
Significance Diabetes mellitus type 1 is an autoimmune disease that results in irreversible destruction of insulin-producing beta cells. Substantial advances have been made in beta cell replacement therapies over the last decades. However, lack of eligible donor organs and the need for chronic immunosuppression to prevent rejection critically limit a widespread application of these strategies. In this paper we present the clinical success of using a bioartificial pancreas for the transplantation of insulin-producing islets without affecting the immune system. In a patient with long-standing type-1 diabetes we could demonstrate persistent graft function and regulated insulin secretion without the need for immune-modulating medication. This strategy opens up avenues for more widespread and safe application of various cell-based therapies. Transplantation of pancreatic islets is emerging as a successful treatment for type-1 diabetes. Its current stringent restriction to patients with critical metabolic lability is justified by the long-term need for immunosuppression and a persistent shortage of donor organs. We developed an oxygenated chamber system composed of immune-isolating alginate and polymembrane covers that allows for survival and function of islets without immunosuppression. A patient with type-1 diabetes received a transplanted chamber and was followed for 10 mo. Persistent graft function in this chamber system was demonstrated, with regulated insulin secretion and preservation of islet morphology and function without any immunosuppressive therapy. This approach may allow for future widespread application of cell-based therapies.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Barbara Ludwig; Avi Rotem; Janine Schmid; Gordon C. Weir; Clark K. Colton; Mathias D. Brendel; Tova Neufeld; Norman L. Block; Karina Yavriyants; Anja Steffen; Stefan Ludwig; Triantafyllos Chavakis; Andreas Reichel; Dimitri Azarov; Baruch Zimermann; Shiri Maimon; Mariya Balyura; Tania Rozenshtein; Noa Shabtay; Pnina Vardi; Konstantin Bloch; Paul de Vos; Andrew V. Schally; Stefan R. Bornstein; Uriel Barkai
Islet transplantation is a feasible therapeutic alternative for metabolically labile patients with type 1 diabetes. The primary therapeutic target is stable glycemic control and prevention of complications associated with diabetes by reconstitution of endogenous insulin secretion. However, critical shortage of donor organs, gradual loss in graft function over time, and chronic need for immunosuppression limit the indication for islet transplantation to a small group of patients. Here we present a promising approach to address these limitations by utilization of a macrochamber specially engineered for islet transplantation. The s.c. implantable device allows for controlled and adequate oxygen supply and provides immunological protection of donor islets against the host immune system. The minimally invasive implantable chamber normalized blood glucose in streptozotocin-induced diabetic rodents for up to 3 mo. Sufficient graft function depended on oxygen supply. Pretreatment with the growth hormone-releasing hormone (GHRH) agonist, JI-36, significantly enhanced graft function by improving glucose tolerance and increasing β-cell insulin reserve in rats thereby allowing for a reduction of the islet mass required for metabolic control. As a result of hypervascularization of the tissue surrounding the device, no relevant delay in insulin response to glucose changes has been observed. Consequently, this system opens up a fundamental strategy for therapy of diabetes and may provide a promising avenue for future approaches to xenotransplantation.
PLOS ONE | 2013
Tova Neufeld; Barbara Ludwig; Uriel Barkai; Gordon C. Weir; Clark K. Colton; Yoav Evron; Maria Balyura; Karina Yavriyants; Baruch Zimermann; Dmitri Azarov; Shiri Maimon; Noa Shabtay; Tania Rozenshtein; Dana Lorber; Anja Steffen; Udi Willenz; Konstantine Bloch; Pnina Vardi; Ran Taube; Paul de Vos; Eli C. Lewis; Stefan R. Bornstein; Avi Rotem
Developing a device that protects xenogeneic islets to allow treatment and potentially cure of diabetes in large mammals has been a major challenge in the past decade. Using xenogeneic islets for transplantation is required in light of donor shortage and the large number of diabetic patients that qualify for islet transplantation. Until now, however, host immunoreactivity against the xenogeneic graft has been a major drawback for the use of porcine islets. Our study demonstrates the applicability of a novel immunoprotective membrane that allows successful xenotransplantation of rat islets in diabetic minipigs without immunosuppressive therapy. Rat pancreatic islets were encapsulated in highly purified alginate and integrated into a plastic macrochamber covered by a poly-membrane for subcutaneous transplantation. Diabetic Sinclair pigs were transplanted and followed for up to 90 days. We demonstrated a persistent graft function and restoration of normoglycemia without the need for immunosuppressive therapy. This concept could potentially offer an attractive strategy for a more widespread islet replacement therapy that would restore endogenous insulin secretion in diabetic patients without the need for immunosuppressive drugs and may even open up an avenue for safe utilization of xenogeneic islet donors.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Barbara Ludwig; Christian G. Ziegler; Andrew V. Schally; Claudius Richter; Anja Steffen; Normund Jabs; Richard Funk; Mathias D. Brendel; Norman L. Block; Monika Ehrhart-Bornstein; Stefan R. Bornstein
Therapeutic strategies for transplantation of pancreatic islet cells are urgently needed to expand β-cell mass by stimulating islet cell proliferation and/or prolonging islet cell survival. Control of the islets by different growth factors provides a potential venue for augmenting β-cell mass. In the present study, we show the expression of the biologically active splice variant-1 (SV-1) of growth hormone-releasing hormone (GHRH) receptor in rat insulinoma (INS-1) cells as well as in rat and human pancreatic islets. In studies in vitro of INS-1 cells, the GHRH agonist JI-36 caused a significant increase in cell proliferation and a reduction of cell apoptosis. JI-36 increased islet size and glucose-stimulated insulin secretion in isolated rat islets after 48–72 h. At the ultrastructural level, INS-1 cells treated with agonist JI-36 revealed a metabolic active stimulation state with increased cytoplasm. Coincubation with the GHRH antagonist MIA-602 reversed the actions of the agonist JI-36, indicating the specificity of this agonist. In vivo, the function of pancreatic islets was assessed by transplantation of rat islets under the kidney capsule of streptozotocin-induced diabetic non-obese diabetic-severe combined immunodeficiency (NOD-SCID) mice. Islets treated with GHRH agonist JI-36 were able to achieve normoglycemia earlier and more consistently than untreated islets. Furthermore, in contrast to diabetic animals transplanted with untreated islets, insulin response to an i.p. glucose tolerance test (IPGTT) in animals receiving islets treated with agonist Jl-36 was comparable to that of normal healthy mice. In conclusion, our study provides evidence that agonists of GHRH represent a promising pharmacological therapy aimed at promoting islet graft growth and proliferation in diabetic patients.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Janine Schmid; Barbara Ludwig; Andrew V. Schally; Anja Steffen; Christian G. Ziegler; Norman L. Block; Yassemi Koutmani; Mathias D. Brendel; Katia Karalis; Charmaine J. Simeonovic; Julio Licinio; Monika Ehrhart-Bornstein; Stefan R. Bornstein
Corticotropin-releasing hormone (CRH) and growth hormone-releasing hormone (GHRH), primarily characterized as neuroregulators of the hypothalamic-pituitary-adrenal axis, directly influence tissue-specific receptor-systems for CRH and GHRH in the endocrine pancreas. Here, we demonstrate the expression of mRNA for CRH and CRH-receptor type 1 (CRHR1) and of protein for CRHR1 in rat and human pancreatic islets and rat insulinoma cells. Activation of CRHR1 and GHRH-receptor significantly increased cell proliferation and reduced cell apoptosis. CRH stimulated both cellular content and release of insulin in rat islet and insulinoma cells. At the ultrastructural level, CRHR1 stimulation revealed a more active metabolic state with enlarged mitochondria. Moreover, glucocorticoids that promote glucose production are balanced by both 11b-hydroxysteroid dehydrogenase (11β-HSD) isoforms; 11β-HSD–type-1 and 11β-HSD–type-2. We demonstrated expression of mRNA for 11β-HSD-1 and 11β-HSD-2 and protein for 11β-HSD-1 in rat and human pancreatic islets and insulinoma cells. Quantitative real-time PCR revealed that stimulation of CRHR1 and GHRH-receptor affects the metabolism of insulinoma cells by down-regulating 11β-HSD-1 and up-regulating 11β-HSD-2. The 11β-HSD enzyme activity was analyzed by measuring the production of cortisol from cortisone. Similarly, activation of CRHR1 resulted in reduced cortisol levels, indicating either decreased 11β-HSD-1 enzyme activity or increased 11β-HSD-2 enzyme activity; thus, activation of CRHR1 alters the glucocorticoid balance toward the inactive form. These data indicate that functional receptor systems for hypothalamic-releasing hormone agonists exist within the endocrine pancreas and influence synthesis of insulin and the pancreatic glucocorticoid shuttle. Agonists of CRHR1 and GHRH-receptor, therefore, may play an important role as novel therapeutic tools in the treatment of diabetes mellitus.
PLOS ONE | 2010
Yanmei Liu; Jakob Suckale; Jimmy Masjkur; Maria Grazia Magro; Anja Steffen; Konstantinos Anastassiadis; Michele Solimena
Background The inducible Cre-lox system is a valuable tool to study gene function in a spatial and time restricted fashion in mouse models. This strategy relies on the limited background activity of the modified Cre recombinase (CreER) in the absence of its inducer, the competitive estrogen receptor ligand, tamoxifen. The RIP-CreER mouse (Tg (Ins2-cre/Esr1) 1Dam) is among the few available β-cell specific CreER mouse lines and thus it has been often used to manipulate gene expression in the insulin-producing cells of the endocrine pancreas. Principal Findings Here, we report the detection of tamoxifen-independent Cre activity as early as 2 months of age in RIP-CreER mice crossed with three distinct reporter strains. Significance Evidence of Cre-mediated recombination of floxed alleles even in the absence of tamoxifen administration should warrant cautious use of this mouse for the study of pancreatic β-cells.
Current Diabetes Reports | 2010
Barbara Ludwig; Stefan Ludwig; Anja Steffen; Hans-Detlev Saeger; Stefan R. Bornstein
Whole organ pancreas and pancreatic islet transplantation are currently the only forms of clinically available β-cell replacement. Both therapeutic options can provide good glycemic control and prevention or stabilization of diabetic complications, but at the price of permanent immunosuppression. Therefore, the indication for transplantation of type 1 diabetes patients must be balanced carefully and should be restricted to a subgroup of patients with extreme lability of metabolic control and frequent hypoglycemia despite optimal medical therapy.
Endocrinology | 2017
Christian M. Cohrs; Chunguang Chen; Stephan R. Jahn; Julia Stertmann; Helena Chmelova; Jürgen Weitz; Andrea Bähr; Nikolai Klymiuk; Anja Steffen; Barbara Ludwig; Virginia Kamvissi; Eckhard Wolf; Stefan R. Bornstein; Michele Solimena; Stephan Speier
Islet-cell hormone release is modulated by signals from endothelial and endocrine cells within the islet. However, models of intraislet vascularization and paracrine cell signaling are mostly based on the rodent pancreas. We assessed the architecture and endocrine cell interaction of the vascular network in unperturbed human islets in situ and their potential to re-establish their endogenous vascular network after transplantation in vivo. We prepared slices of fresh pancreas tissue obtained from nondiabetic patients undergoing partial pancreatectomy. In addition, we transplanted human donor islets into the anterior chamber of the mouse eye. Next, we performed three-dimensional in situ and in vivo imaging of islet cell and vessel architecture at cellular resolution and compared our findings with mouse and porcine islets. Our data reveal a significantly different vascular architecture with decreased vessel diameter, reduced vessel branching, and shortened total vessel network in human compared with mouse islets. Together with the distinct cellular arrangement in human islets, this limits β to endothelial cell interactions, facilitates connection of α and β cells, and promotes the formation of independent β-cell clusters within islets. Furthermore, our results show that the endogenous vascular network of islets is significantly altered after transplantation in a donor age-related mechanism. Thus, our study provides insight into the vascular architecture and cellular arrangement of human islets with apparent consequences for intercellular islet signaling. Moreover, our findings suggest that human islet engraftment after transplantation can be improved by using alternative, less mature islet-cell sources.
Islets | 2010
Florian Ehehalt; Klaus Peter Knoch; Katja Erdmann; Christian Krautz; Melanie Jäger; Anja Steffen; Carolin Wegbrod; Ronny Meisterfeld; Stephan Kersting; Hendrik Bergert; Eberhard Kuhlisch; Stefan R. Bornstein; Ezio Bonifacio; Hans-Detlev Saeger; Michele Solimena
Failure of pancreatic β-cells contributes to the development of type 2 diabetes. Besides evidence of reduced glucose-stimulated insulin secretion and β-cell mass, little information is available about the molecular deficits of human diabetic islets. Islets were isolated from macroscopically normal pancreatic tissue from 8 patients with type 2 diabetes and 17 matched non-diabetic patients who underwent pancreatic surgery. Insulin content and insulin secretion were measured before and after islet stimulation with 25 mM glucose for 2 hours. In parallel, we also investigated the subcellular localization of polypyrimidine tract-binding protein 1 (PTBP1), whose nucleocytoplasmic translocation is involved in the rapid posttranscriptional up-regulation of insulin biosynthesis following islet stimulation with glucose and GLP-1. Glucose stimulated insulin secretion was decreased, albeit not significantly, in type 2 diabetic islets compared to non-diabetic islets. Stimulation increased the total amount of insulin (islet insulin content + secreted insulin) in islet preparation from non-diabetic patients, but not from type 2 diabetic subjects. Furthermore, the nuclear levels of PTBP1 were decreased in stimulated non-diabetic islets, but not in type 2 diabetic islets. These results suggest that impairment of rapid insulin increase in response to glucose is a specific trait of type 2 diabetic islets. Nuclear retention of PTBP1 is likely to play a role in this deficit, which in turn can contribute to impaired insulin secretion in type 2 diabetes. Overall, these data highlight the importance of investigating mechanisms of insulin biosynthesis and degradation to gain insight into the pathogenesis of type 2 diabetes.
Thrombosis and Haemostasis | 2015
Ioannis Kourtzelis; K. Kotlabova; Jong-Hyung Lim; Ioannis Mitroulis; A. Ferreira; Lan-Sun Chen; Bettina Gercken; Anja Steffen; Elisabeth Kemter; A. Klotzsche-von Ameln; C. Waskow; Kavita B. Hosur; Antonios Chatzigeorgiou; Barbara Ludwig; Eckhard Wolf; George Hajishengallis; Triantafyllos Chavakis
Platelet-monocyte interactions are strongly implicated in thrombo-inflammatory injury by actively contributing to intravascular inflammation, leukocyte recruitment to inflamed sites, and the amplification of the procoagulant response. Instant blood-mediated inflammatory reaction (IBMIR) represents thrombo-inflammatory injury elicited upon pancreatic islet transplantation (islet-Tx), thereby dramatically affecting transplant survival and function. Developmental endothelial locus-1 (Del-1) is a functionally versatile endothelial cell-derived homeostatic factor with anti-inflammatory properties, but its potential role in IBMIR has not been previously addressed. Here, we establish Del-1 as a novel inhibitor of IBMIR using a whole blood-islet model and a syngeneic murine transplantation model. Indeed, Del-1 pre-treatment of blood before addition of islets diminished coagulation activation and islet damage as assessed by C-peptide release. Consistently, intraportal islet-Tx in transgenic mice with endothelial cell-specific overexpression of Del-1 resulted in a marked decrease of monocytes and platelet-monocyte aggregates in the transplanted tissues, relative to those in wild-type recipients. Mechanistically, Del-1 decreased platelet-monocyte aggregate formation, by specifically blocking the interaction between monocyte Mac-1-integrin and platelet GPIb. Our findings reveal a hitherto unknown role of Del-1 in the regulation of platelet-monocyte interplay and the subsequent heterotypic aggregate formation in the context of IBMIR. Therefore, Del-1 may represent a novel approach to prevent or mitigate the adverse reactions mediated through thrombo-inflammatory pathways in islet-Tx and perhaps other inflammatory disorders involving platelet-leukocyte aggregate formation.