Anja Steffen-Heins
University of Kiel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anja Steffen-Heins.
Frontiers in Plant Science | 2013
Bianka Steffens; Anja Steffen-Heins; Margret Sauter
Aquatic and semi-aquatic plants are well adapted to survive partial or complete submergence which is commonly accompanied by oxygen deprivation. The gaseous hormone ethylene controls a number of adaptive responses to submergence including adventitious root growth and aerenchyma formation. Reactive oxygen species (ROS) act as signaling intermediates in ethylene-controlled submergence adaptation and possibly also independent of ethylene. ROS levels are controlled by synthesis, enzymatic metabolism, and non-enzymatic scavenging. While the actors are by and large known, we still have to learn about altered ROS at the subcellular level and how they are brought about, and the signaling cascades that trigger a specific response. This review briefly summarizes our knowledge on the contribution of ROS to submergence adaptation and describes spectrophotometrical, histochemical, and live cell imaging detection methods that have been used to study changes in ROS abundance. Electron paramagnetic resonance (EPR) spectroscopy is introduced as a method that allows identification and quantification of specific ROS in cell compartments. The use of advanced technologies such as EPR spectroscopy will be necessary to untangle the intricate and partially interwoven signaling networks of ethylene and ROS.
Food Chemistry | 2015
Monika Frenzel; Anja Steffen-Heins
Liposomes are suitable for encapsulating lipophilic bioactive compounds, enhancing compound solubility, stability and bioavailability. To enhance physical stability of liposomes in food-like matrices they were coated with positively charged whey protein isolate (WPI). WPI concentration, for a successful coating, was optimised by dynamic light scattering (DLS) and zeta potential measurements. Membrane properties of coated and uncoated vesicles were investigated by electron paramagnetic resonance (EPR) with site-directed and non-site-directed spin probes. Coexistence of two or three simulated spin probe populations indicated a less fluid membrane and higher concentration of water molecules in the phosphate/glycerol moiety with WPI coating. This relies on the insertion of WPI into the membrane, which is favoured by the molten globule state under investigated acidic conditions. Physical stability of liposomes benefits from WPI coating, as indicated by prolonged shelf-life, cancellation of osmotic effects in the presence of salts or sugars and a lower sensitivity towards low pH values during in vitro gastric digestion.
Food Chemistry | 2015
M. Frenzel; Anja Steffen-Heins
Unsaturated soy phosphatidyl choline (PC) liposomes were systematically analyzed for chemical and physical stability and for influence on membrane fluidity, when quercetin and fish oil were encapsulated. The physical stability of liposomes was lowered with loading, which is mainly due to fish oil leakage. While fish oil did not induce oxidative acceleration, quercetin did not reduce lipid-derived radical formation but it did inhibit hexanal formation. It also showed no relevant effects on membrane fluidity, polarity or partitioning of the spin probe TEMPOL-benzoate (TB), as proved by EPR measurements and simulation. However, increasing concentration of fish oil in a membrane might increase the acyl chain dynamics and therefore apply a more attractive environment for TB. In contrast to the encapsulates increasing fluidity of saturated membranes by disturbing the lipid packing, membrane properties of unsaturated systems with a Tm below 0 °C were not influenced by encapsulation of quercetin or fish oil.
Frontiers in Environmental Science | 2015
Anja Steffen-Heins; Bianka Steffens
While it is widely accepted that reactive oxygen species (ROS) are common players in developmental processes and a large number of adaptations to abiotic and biotic stresses in plants, we still do not know a lot about ROS level control at cellular or organelle level. One major problem that makes ROS hard to quantify and even to identify is their short lifetime. A promising technique that helps to understand ROS level control in planta is the electron paramagnetic resonance (EPR) spectroscopy. Application of the spin trapping method and the spin probe technique by this advanced method enables the quantification and identification of specific ROS in different plant tissues, cells or organelles or under different conditions. This mini review summarizes the knowledge using EPR spectroscopy as a method for ROS detection in plants under different stress conditions or during development. This technique allows disentangling the origin of specific ROS and transient alteration in ROS levels that occur by changes in ROS production and scavenging.
Journal of Colloid and Interface Science | 2015
Heimke Krudopp; Frank D. Sönnichsen; Anja Steffen-Heins
HYPOTHESIS The partitioning behavior of paramagnetic nitroxides in dispersed systems can be determined by deconvolution of electron paramagnetic resonance (EPR) spectra giving equivalent results with the validated methods of ultrafiltration techniques (UF) and pulsed-field gradient nuclear magnetic resonance spectroscopy (PFG-NMR). EXPERIMENTS The partitioning behavior of nitroxides with increasing lipophilicity was investigated in anionic, cationic and nonionic micellar systems and 10 wt% o/w emulsions. Apart from EPR spectra deconvolution, the PFG-NMR was used in micellar solutions as a non-destructive approach, while UF based on separation of very small volume of the aqueous phase. FINDINGS As a function of their substituent and lipophilicity, the proportions of nitroxides that were solubilized in the micellar or emulsion interface increased with increasing nitroxide lipophilicity for all emulsifier used. Comparing the different approaches, EPR deconvolution and UF revealed comparable nitroxide proportions that were solubilized in the interfaces. Those proportions were higher than found with PFG-NMR. For PFG-NMR self-diffusion experiments the reduced nitroxides were used revealing a high dynamic of hydroxylamines and emulsifiers. Deconvolution of EPR spectra turned out to be the preferred method for measuring the partitioning behavior of paramagnetic molecules as it enables distinguishing between several populations at their individual solubilization sites.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Elaine Yeung; Hans van Veen; Divya Vashisht; Ana Luiza Sobral Paiva; Maureen Hummel; Tom Rankenberg; Bianka Steffens; Anja Steffen-Heins; Margret Sauter; Michel de Vries; Robert C. Schuurink; Jérémie Bazin; Julia Bailey-Serres; Laurentius A. C. J. Voesenek; Rashmi Sasidharan
Significance Flooding due to extreme weather events can be highly detrimental to plant development and yield. Speedy recovery following stress removal is an important determinant of tolerance, yet mechanisms regulating this remain largely uncharacterized. We identified a regulatory network in Arabidopsis thaliana that controls water loss and senescence to influence recovery from prolonged submergence. Targeted control of the molecular mechanisms facilitating stress recovery identified here could potentially improve performance of crops in flood-prone areas. Abiotic stresses in plants are often transient, and the recovery phase following stress removal is critical. Flooding, a major abiotic stress that negatively impacts plant biodiversity and agriculture, is a sequential stress where tolerance is strongly dependent on viability underwater and during the postflooding period. Here we show that in Arabidopsis thaliana accessions (Bay-0 and Lp2-6), different rates of submergence recovery correlate with submergence tolerance and fecundity. A genome-wide assessment of ribosome-associated transcripts in Bay-0 and Lp2-6 revealed a signaling network regulating recovery processes. Differential recovery between the accessions was related to the activity of three genes: RESPIRATORY BURST OXIDASE HOMOLOG D, SENESCENCE-ASSOCIATED GENE113, and ORESARA1, which function in a regulatory network involving a reactive oxygen species (ROS) burst upon desubmergence and the hormones abscisic acid and ethylene. This regulatory module controls ROS homeostasis, stomatal aperture, and chlorophyll degradation during submergence recovery. This work uncovers a signaling network that regulates recovery processes following flooding to hasten the return to prestress homeostasis.
Food Chemistry | 2017
Janine Tippel; Katharina Gies; Britta Harbaum-Piayda; Anja Steffen-Heins; Stephan Drusch
Colloids and Surfaces A: Physicochemical and Engineering Aspects | 2017
Johanna Milsmann; Kathleen Oehlke; Katrin Schrader; Ralf Greiner; Anja Steffen-Heins
Industrial Crops and Products | 2018
Ana Belščak-Cvitanović; Aleksandra Vojvodić; Arijana Bušić; Julia K. Keppler; Anja Steffen-Heins; Draženka Komes
Colloids and Surfaces A: Physicochemical and Engineering Aspects | 2017
Johanna Milsmann; Kathleen Oehlke; Ralf Greiner; Anja Steffen-Heins