Anja Voigt
University of Potsdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anja Voigt.
Journal of Biological Chemistry | 2006
Tim J. Schulz; René Thierbach; Anja Voigt; Gunnar Drewes; Brun Mietzner; Pablo Steinberg; Andreas F.H. Pfeiffer; Michael Ristow
More than 80 years ago Otto Warburg suggested that cancer might be caused by a decrease in mitochondrial energy metabolism paralleled by an increase in glycolytic flux. In later years, it was shown that cancer cells exhibit multiple alterations in mitochondrial content, structure, function, and activity. We have stably overexpressed the Friedreich ataxia-associated protein frataxin in several colon cancer cell lines. These cells have increased oxidative metabolism, as shown by concurrent increases in aconitase activity, mitochondrial membrane potential, cellular respiration, and ATP content. Consistent with Warburgs hypothesis, we found that frataxin-overexpressing cells also have decreased growth rates and increased population doubling times, show inhibited colony formation capacity in soft agar assays, and exhibit a reduced capacity for tumor formation when injected into nude mice. Furthermore, overexpression of frataxin leads to an increased phosphorylation of the tumor suppressor p38 mitogen-activated protein kinase, as well as decreased phosphorylation of extracellular signal-regulated kinase. Taken together, these results support the view that an increase in oxidative metabolism induced by mitochondrial frataxin may inhibit cancer growth in mammals.
Aging Cell | 2011
Susanne Keipert; Anja Voigt; Susanne Klaus
Little is known about how diet and energy metabolism interact in determination of lifespan under ad libitum feeding. From 12 weeks of age until death, male and female wild‐type (WT) and transgenic (TG) mice with increased skeletal muscle mitochondrial uncoupling (HSA‐mUCP1 mice) were fed one of three different semisynthetic diets differing in macronutrient ratio: control (high‐carbohydrate/low‐fat‐HCLF) and two high‐fat diets: high‐carbohydrate/high‐fat (HCHF), and low‐carbohydrate/high‐fat (LCHF). Compared to control and LCHF, HCHF feeding rapidly and significantly increased body fat content in WT. Median lifespan of WT was decreased by 33% (HCHF) and 7% (LCHF) compared to HCLF. HCHF significantly increased insulin resistance (HOMA) of WT from 24 weeks on compared to control. TG mice had lower lean body mass and increased energy expenditure, insulin sensitivity, and maximum lifespan (+10%) compared to WT. They showed a delayed development of obesity on HCHF but reached similar maximum adiposity as WT. TG median lifespan was only slightly reduced by HCHF (−7%) and unaffected by LCHF compared to control. Correlation analyses showed that decreased longevity was more strongly linked to a high rate of fat gain than to adiposity itself. Furthermore, insulin resistance was negatively and weight‐specific energy expenditure was positively correlated with longevity. We conclude that (i) dietary macronutrient ratios strongly affected obesity development, glucose homeostasis, and longevity, (ii) that skeletal muscle mitochondrial uncoupling alleviated the detrimental effects of high‐fat diets, and (iii) that early imbalances in energy homeostasis leading to increased insulin resistance are predictive for a decreased lifespan.
Molecular Nutrition & Food Research | 2013
Anja Voigt; Katrin Agnew; Evert M. van Schothorst; Jaap Keijer; Susanne Klaus
SCOPE We aimed to evaluate the predictability of short-term (5 days) changes in epididymal white adipose tissue (eWAT) gene expression for long-term (12 weeks) changes induced by high-fat diet (HFD) feeding. METHODS AND RESULTS Mice were fed semisynthetic diets containing 10 (low-fat diet) or 40 (HFD) energy% of fat. Global gene expression in eWAT was analyzed using microarrays and confirmed by quantitative PCR. As expected, HFD feeding resulted in increased body fat accumulation and reduced glucose tolerance after 12 weeks. A total of 4678 transcripts were significantly changed by HFD after 12 weeks and 973 after 5 days, with an overlap of 764 transcripts encoding 549 genes. Of these, 79% were downregulated and 21% were upregulated by HFD, all in the same direction and highly correlated (r(2) = 0.90) between the time points. Pathway analysis showed downregulation of the main identified processes: lipid metabolism, carbohydrate metabolism, and oxidative phosphorylation. Mest (mesoderm-specific transcript) was highly upregulated, confirming its role as an early marker of fat cell expansion. CONCLUSION The high predictive value of short-term gene expression changes for long-term effects of high fat feeding is a promising step to establish robust early biomarkers that could shorten animal trials to assess health-promoting food compounds.
Biochemical Journal | 2010
René Thierbach; Gunnar Drewes; Markus Fusser; Anja Voigt; Doreen Kuhlow; Urte Blume; Tim J. Schulz; Carina Reiche; Hansruedi Glatt; Bernd Epe; Pablo Steinberg; Michael Ristow
DNA-repair mechanisms enable cells to maintain their genetic information by protecting it from mutations that may cause malignant growth. Recent evidence suggests that specific DNA-repair enzymes contain ISCs (iron–sulfur clusters). The nuclearencoded protein frataxin is essential for the mitochondrial biosynthesis of ISCs. Frataxin deficiency causes a neurodegenerative disorder named Friedreichs ataxia in humans. Various types of cancer occurring at young age are associated with this disease, and hence with frataxin deficiency. Mice carrying a hepatocyte-specific disruption of the frataxin gene develop multiple liver tumours for unresolved reasons. In the present study, we show that frataxin deficiency in murine liver is associated with increased basal levels of oxidative DNA base damage. Accordingly, eukaryotic V79 fibroblasts overexpressing human frataxin show decreased basal levels of these modifications, while prokaryotic Salmonella enterica serotype Typhimurium TA104 strains transformed with human frataxin show decreased mutation rates. The repair rates of oxidative DNA base modifications in V79 cells overexpressing frataxin were significantly higher than in control cells. Lastly, cleavage activity related to the ISC-independent repair enzyme 8-oxoguanine glycosylase was found to be unaltered by frataxin overexpression. These findings indicate that frataxin modulates DNA-repair mechanisms probably due to its impact on ISC-dependent repair proteins, linking mitochondrial dysfunction to DNA repair and tumour initiation.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Doreen Pomplun; Anja Voigt; Tim J. Schulz; René Thierbach; Andreas F.H. Pfeiffer; Michael Ristow
Published evidence suggests that adiposity in humans may be linked to impaired energy expenditure for reasons widely unresolved. We have generated mice with a systemic impairment of oxidative phosphorylation (OXPHOS) due to aP2 cre-mediated targeted disruption, and unexpectedly ubiquitous reduction of mitochondrial frataxin protein expression. Only when maintained on a high-calorie diet resembling Westernized eating habits, these animals accumulate additional body fat, leading to increased body mass, and develop diabetes mellitus, despite the fact that both calorie uptake and physical activity were identical to that in control animals. This phenotype is caused by a mild but significant reduction in total energy expenditure paralleled by increased expression of ATP citrate lyase, a rate-limiting step in de novo synthesis of fatty acids and triglycerides. Taken together, these findings indicate that a limited impairment in oxidative metabolism within the mitochondria directly predisposes mammals to excessive body weight gain.
PLOS ONE | 2014
Mario Ost; Franziska Werner; Janine Dokas; Susanne Klaus; Anja Voigt
Transgenic (UCP1-TG) mice with ectopic expression of UCP1 in skeletal muscle (SM) show a phenotype of increased energy expenditure, improved glucose tolerance and increase substrate metabolism in SM. To investigate the potential role of skeletal muscle AMPKα2 activation in the metabolic phenotype of UCP1-TG mice we generated double transgenic (DTG) mice, by crossing of UCP1-TG mice with DN-AMPKα2 mice overexpressing a dominant negative α2 subunit of AMPK in SM which resulted in an impaired AMPKα2 activity by 90±9% in SM of DTG mice. Biometric analysis of young male mice showed decreased body weight, lean and fat mass for both UCP1-TG and DTG compared to WT and DN-AMPKα2 mice. Energy intake and weight-specific total energy expenditure were increased, both in UCP1-TG and DTG mice. Moreover, glucose tolerance, insulin sensitivity and fatty acid oxidation were not altered in DTG compared to UCP1-TG. Also uncoupling induced induction and secretion of fibroblast growth factor 21 (FGF21) from SM was preserved in DTG mice. However, voluntary physical cage activity as well as ad libitum running wheel access during night uncovered a severe activity intolerance of DTG mice. Histological analysis showed a progressive degenerative morphology in SM of DTG mice which was not observed in SM of UCP1-TG mice. Moreover, ATP-depletion related cellular stress response via heat shock protein 70 was highly induced, whereas capillarization regulator VEGF was suppressed in DTG muscle. In addition, AMPKα2-mediated induction of mitophagy regulator ULK1 was suppressed in DTG mice, as well as mitochondrial respiratory capacity and content. In conclusion, we demonstrate that AMPKα2 is dispensable for SM mitochondrial uncoupling induced metabolic effects on whole body energy balance, glucose homeostasis and insulin sensitivity. But strikingly, activation of AMPKα2 seems crucial for maintaining SM function, integrity and the ability to compensate chronic metabolic stress induced by SM mitochondrial uncoupling.
Human Molecular Genetics | 2012
René Thierbach; Simone Florian; Katharina Wolfrum; Anja Voigt; Gunnar Drewes; Urte Blume; Peter Bannasch; Michael Ristow; Pablo Steinberg
Friedreichs ataxia is an inherited neurodegenerative disease caused by the reduced expression of the mitochondrially active protein frataxin. We have previously shown that mice with a hepatocyte-specific frataxin knockout (AlbFxn(-/-)) develop multiple hepatic tumors in later life. In the present study, hepatic carbohydrate metabolism in AlbFxn(-/-) mice at an early and late life stage was analyzed. In young (5-week-old) AlbFxn(-/-) mice hepatic ATP, glucose-6-phosphate and glycogen levels were found to be reduced by ∼74, 80 and 88%, respectively, when compared with control animals. This pronounced ATP, G6P and glycogen depletion in the livers of young mice reverted in older animals: while half of the mice die before 30 weeks of age, the other half reaches 17 months of age and exhibits glycogen, G6P and ATP levels similar to those in age-matched controls. A key event in this respect seems to be the up-regulation of GLUT1, the predominant glucose transporter in fetal liver parenchyma, which became evident in AlbFxn(-/-) mice being 5-12 weeks of age. The most significant histological findings in animals being 17 or 22 months of age were the appearance of multiple clear cell, mixed cell and basophilic foci throughout the liver parenchyma as well as the development of hepatocellular adenomas and carcinomas. The hepatocarcinogenic process in AlbFxn(-/-) mice shows remarkable differences regarding carbohydrate metabolism alterations when compared with all other chemically and virally driven liver cancer models described up to now.
European Journal of Nutrition | 2010
Doreen Kuhlow; Kim Zarse; Anja Voigt; Tim J. Schulz; Klaus J. Petzke; Lutz Schomburg; Andreas F.H. Pfeiffer; Michael Ristow
PurposeBoth dietary fat and dietary sucrose are major components of Western diets that may differentially affect the risk for body mass gain, diabetes mellitus, and cardiovascular disease.MethodsWe have phenotypically analyzed mice with ubiquitously impaired expression of mitochondrial frataxin protein that were challenged with diets differing in macronutrient content, namely high-sucrose/low-fat and high-saturated fat/low-sugar diets.ResultsWe find here that a high-sucrose/low-fat diet has especially detrimental effects in mice with impaired mitochondrial metabolism promoting several independent cardiovascular risk factors, including impaired glucose metabolism, fasting hyperinsulinemia, reduced glucose-stimulated insulin secretion, increased serum triglycerides, and elevated cholesterol levels due to increased expression of HMG-CoA reductase. In contrast, a high-saturated fat/low-sugar diet protects mice with impaired mitochondrial metabolism from diet-induced obesity by increasing total energy expenditure and increasing expression of ACAA2, a rate-limiting enzyme of mitochondrial beta-oxidation, whereas no concomitant improvement of glucose metabolism was observed.ConclusionsTaken together, our results suggest that mitochondrial dysfunction may cause sucrose to become a multifunctional cardiovascular risk factor, whereas low-sugar diets high in saturated fat may prevent weight gain without improving glucose metabolism.
Mammalian Biology | 2016
Verena Coleman; Mario Ost; Anja Voigt; Evert M. van Schothorst; Susanne Keipert; Inge van der Stelt; Sebastian Ringel; Antonia Graja; Thomas H. Ambrosi; Anna P. Kipp; Martin Jastroch; Tim J. Schulz; Jaap Keijer; Susanne Klaus
Objective: Fibroblast growth factor 21 (FGF21) was recently discovered as stress-induced myokine during mitochondrial disease and proposed as key metabolic mediator of the integrated stress response (ISR) presumably causing systemic metabolic improvements. Curiously, the precise cell-non-autonomous and cell-autonomous relevance of endogenous FGF21 action remained poorly understood. Methods: We made use of the established UCP1 transgenic (TG) mouse, a model of metabolic perturbations made by a specific decrease in muscle mitochondrial efficiency through increased respiratory uncoupling and robust metabolic adaptation and muscle ISR-driven FGF21 induction. In a cross of TG with Fgf21-knockout (FGF21 / ) mice, we determined the functional role of FGF21 as a muscle stress-induced myokine under low and high fat feeding conditions. Results: Here we uncovered that FGF21 signaling is dispensable for metabolic improvements evoked by compromised mitochondrial function in skeletal muscle. Strikingly, genetic ablation of FGF21 fully counteracted the cell-non-autonomous metabolic remodeling and browning of subcutaneous white adipose tissue (WAT), together with the reduction of circulating triglycerides and cholesterol. Brown adipose tissue activity was similar in all groups. Remarkably, we found that FGF21 played a negligible role in muscle mitochondrial stress-related improved obesity resistance, glycemic control and hepatic lipid homeostasis. Furthermore, the protective cell-autonomous muscle mitohormesis and metabolic stress adaptation, including an increased muscle proteostasis via mitochondrial unfolded protein response (UPR) and amino acid biosynthetic pathways did not require the presence of FGF21. Conclusions: Here we demonstrate that although FGF21 drives WAT remodeling, the adaptive pseudo-starvation response under elevated muscle mitochondrial stress conditions operates independently of both WAT browning and FGF21 action. Thus, our findings challenge FGF21 as key metabolic mediator of the mitochondrial stress adaptation and powerful therapeutic target during muscle mitochondrial disease. 2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Cell Metabolism | 2007
Tim J. Schulz; Kim Zarse; Anja Voigt; Nadine Urban; Marc Birringer; Michael Ristow