Anjali K. Nath
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anjali K. Nath.
American Journal of Pathology | 2000
Daniel S. O'Connor; Jeffrey S. Schechner; Colette Adida; Mehdi Mesri; Annette L. Rothermel; Fengzhi Li; Anjali K. Nath; Jordan S. Pober; Dario C. Altieri
Mechanisms controlling endothelial cell survival during angiogenesis were investigated. Stimulation of quiescent endothelial cells with mitogens, including vascular endothelial growth factor and basic fibroblast growth factor, induced up to approximately 16-fold up-regulation of the cell cycle-regulated apoptosis inhibitor survivin. Mitogen stimulation rapidly increased survivin RNA expression in endothelial cells, which peaked after 6 to 10 hours in culture and decreased by 24 hours. Inflammatory cytokines, tumor necrosis factor alpha, and interleukin-1 did not induce survivin expression in endothelial cells. Formation of three-dimensional vascular tubes in vitro was associated with strong induction of survivin in endothelial cells, as compared with two-dimensional cultures. By immunohistochemistry, survivin was minimally expressed in endothelium of nonproliferating capillaries of normal skin, whereas it became massively up-regulated in newly formed blood vessels of granulation tissue in vivo. Recombinant expression of green fluorescent protein survivin in endothelial cells reduced caspase-3 activity and counteracted apoptosis induced by tumor necrosis factor alpha/cycloheximide. These findings identify survivin as a novel growth factor-inducible protective gene expressed by endothelial cells during angiogenesis. Therapeutic manipulation of survivin expression and function in endothelium may influence compensatory or pathological (tumor) angiogenesis.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Frank J. Giordano; Hans-Peter Gerber; Simon-Peter Williams; Nicholas VanBruggen; Stuart Bunting; Pilar Ruiz-Lozano; Yusu Gu; Anjali K. Nath; Yan Huang; Reed Hickey; Nancy D. Dalton; Kirk L. Peterson; John Ross; Kenneth R. Chien; Napoleone Ferrara
The role of the cardiac myocyte as a mediator of paracrine signaling in the heart has remained unclear. To address this issue, we generated mice with cardiac myocyte-specific deletion of the vascular endothelial growth factor gene, thereby producing a cardiomyocyte-specific knockout of a secreted factor. The hearts of these mice had fewer coronary microvessels, thinned ventricular walls, depressed basal contractile function, induction of hypoxia-responsive genes involved in energy metabolism, and an abnormal response to β-adrenergic stimulation. These findings establish the critical importance of cardiac myocyte-derived vascular endothelial growth factor in cardiac morphogenesis and determination of heart function. Further, they establish an adult murine model of hypovascular nonnecrotic cardiac contractile dysfunction.
Nature Medicine | 2002
Edward J. Rebar; Yan Huang; Reed Hickey; Anjali K. Nath; David F. Meoli; Sameer K. Nath; Bingliang Chen; Lei Xu; Yuxin Liang; Andrew Jamieson; Lei Zhang; S. Kaye Spratt; Casey C. Case; Alan P. Wolffe; Frank J. Giordano
The relationship between the structure of zinc-finger protein (ZFP) transcription factors and DNA sequence binding specificity has been extensively studied. Advances in this field have made it possible to design ZFPs de novo that will bind to specific targeted DNA sequences. It has been proposed that such designed ZFPs may eventually be useful in gene therapy. A principal advantage of this approach is that activation of an endogenous gene ensures expression of the natural array of splice variants. Preliminary studies in tissue culture have validated the feasibility of this approach. The studies reported here were intended to test whether engineered transcription factors are effective in a whole-organism model. ZFPs were designed to regulate the endogenous gene encoding vascular endothelial growth factor-A (Vegfa). Expression of these new ZFPs in vivo led to induced expression of the protein VEGF-A, stimulation of angiogenesis and acceleration of experimental wound healing. In addition, the neovasculature resulting from ZFP-induced expression of Vegfa was not hyperpermeable as was that produced by expression of murine Vegfa164 cDNA. These data establish, for the first time, that specifically designed transcription factors can regulate an endogenous gene in vivo and evoke a potentially therapeutic biophysiologic effect.
The FASEB Journal | 2003
Ali Murad; Anjali K. Nath; Sung-Tae Cha; Erhan Demir; Jaime Flores-Riveros; M. Rocio Sierra-Honigmann
Leptin, a 16 kDa pleiotropic cytokine primarily expressed in adipose tissue, has been shown to cause multiple systemic biological actions. Recently, leptin has also been documented as an important component of the wound healing process and its receptor appears to be expressed in wound tissue. We have previously demonstrated that leptin is a potent angiogenic factor exerting direct effects on endothelial cells and that transcription of its encoding gene is regulated by hypoxia. Here, we hypothesize that leptin expression is acutely up‐regulated in the ischemic tissue of experimental wounds. Using a combination of in situ hybridization and quantitative RT‐PCR experiments, we show that leptin expression is rapidly and steadily up‐regulated in skin tissue from incisional and excisional wounds. By immunohistochemistry, we demonstrate increased and sustained leptin protein levels in basal keratinocytes, blood vessel walls, and fibroblasts. To determine whether leptin is required for normal healing, excisional wounds were treated with neutralizing anti‐leptin antibodies. This treatment markedly hampered healing progression and prevented wound closure and contraction. Finally, a transient rise in circulating blood leptin levels was detected within the first 24 h after inflicting the injury; we present evidence suggesting that this elevation is due to increased leptin production at the ischemic wound site. We conclude that leptin is acutely up‐regulated in the injured skin and propose that this local production of leptin serves a critical functional role as an autocrine/paracrine regulator of normal wound healing.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Tracy L. Bale; Frank J. Giordano; Reed Hickey; Yan Huang; Anjali K. Nath; Kirk L. Peterson; Wylie Vale; Kuo-Fen Lee
Angiogenesis is regulated by means of a balance between activators and inhibitors. However, little is known regarding the regulation of the quiescent state of adult vessels. Corticotropin-releasing factor receptor 2 (CRFR2) is found in both endothelial and smooth muscle cells (SMCs) in the vasculature, where its function has remained elusive. We have investigated the role of CRFR2 as a determinant of tissue vascularization by comparing control and CRFR2-deficient mice with immunohistological and morphometric techniques. To define the mechanisms responsible for CRFR2 inhibition of angiogenesis, we have also examined in vitro the effect of ligand activation on cell proliferation, cell cycle protein phosphorylation, and capillary tube formation. Our results demonstrate that mice deficient for CRFR2 become hypervascularized postnatally. Activation of this receptor in vitro results in reduced vascular endothelial growth factor (VEGF) release from SMCs, an inhibition of SMC proliferation, and inhibition of capillary tube formation in collagen gels. Treatment of a subcutaneously injected gel matrix with a CRFR2 agonist inhibits growth factor-induced vascularization. Western blots show that cell cycle retinoblastoma protein, which is essential for cell cycle progression, is decreased by CRFR2 agonist treatment in SMCs. These results suggest that CRFR2 is a critical component of a pathway necessary for tonic inhibition of adult neovascularization. CRFR2 may be a potential target for therapeutic modulation of angiogenesis in cancer and ischemic cardiovascular disease.
Development | 2004
Anjali K. Nath; Josephine Enciso; Misako Kuniyasu; Xiao-Ying Hao; Joseph A. Madri; Emese Pinter
Nitric oxide (NO) has been demonstrated to mediate events during ovulation, pregnancy, blastocyst invasion and preimplantation embryogenesis. However, less is known about the role of NO during postimplantation development. Therefore, in this study, we explored the effects of NO during vascular development of the murine yolk sac, which begins shortly after implantation. Establishment of the vitelline circulation is crucial for normal embryonic growth and development. Moreover, functional inactivation of the endodermal layer of the yolk sac by environmental insults or genetic manipulations during this period leads to embryonic defects/lethality, as this structure is vital for transport, metabolism and induction of vascular development. In this study, we describe the temporally/spatially regulated distribution of nitric oxide synthase (NOS) isoforms during the three stages of yolk sac vascular development (blood island formation, primary capillary plexus formation and vessel maturation/remodeling) and found NOS expression patterns were diametrically opposed. To pharmacologically manipulate vascular development, an established in vitro system of whole murine embryo culture was employed. During blood island formation, the endoderm produced NO and inhibition of NO (L-NMMA) at this stage resulted in developmental arrest at the primary plexus stage and vasculopathy. Furthermore, administration of a NO donor did not cause abnormal vascular development; however, exogenous NO correlated with increased eNOS and decreased iNOS protein levels. Additionally, a known environmental insult (high glucose) that produces reactive oxygen species (ROS) and induces vasculopathy also altered eNOS/iNOS distribution and induced NO production during yolk sac vascular development. However, administration of a NO donor rescued the high glucose induced vasculopathy, restored the eNOS/iNOS distribution and decreased ROS production. These data suggest that NO acts as an endoderm-derived factor that modulates normal yolk sac vascular development, and decreased NO bioavailability and NO-mediated sequela may underlie high glucose induced vasculopathy.
PLOS ONE | 2009
Anjali K. Nath; Michael Krauthammer; Puyao Li; Eugene Davidov; Lucas C. Butler; Joshua A. Copel; Mikko Katajamaa; Matej Orešič; Irina A. Buhimschi; Catalin S. Buhimschi; Michael Snyder; Joseph A. Madri
Background Cardiovascular development is vital for embryonic survival and growth. Early gestation embryo loss or malformation has been linked to yolk sac vasculopathy and congenital heart defects (CHDs). However, the molecular pathways that underlie these structural defects in humans remain largely unknown hindering the development of molecular-based diagnostic tools and novel therapies. Methodology/Principal Findings Murine embryos were exposed to high glucose, a condition known to induce cardiovascular defects in both animal models and humans. We further employed a mass spectrometry-based proteomics approach to identify proteins differentially expressed in embryos with defects from those with normal cardiovascular development. The proteins detected by mass spectrometry (WNT16, ST14, Pcsk1, Jumonji, Morca2a, TRPC5, and others) were validated by Western blotting and immunoflorescent staining of the yolk sac and heart. The proteins within the proteomic dataset clustered to adhesion/migration, differentiation, transport, and insulin signaling pathways. A functional role for several proteins (WNT16, ADAM15 and NOGO-A/B) was demonstrated in an ex vivo model of heart development. Additionally, a successful application of a cluster of protein biomarkers (WNT16, ST14 and Pcsk1) as a prenatal screen for CHDs was confirmed in a study of human amniotic fluid (AF) samples from women carrying normal fetuses and those with CHDs. Conclusions/Significance The novel finding that WNT16, ST14 and Pcsk1 protein levels increase in fetuses with CHDs suggests that these proteins may play a role in the etiology of human CHDs. The information gained through this bed-side to bench translational approach contributes to a more complete understanding of the protein pathways dysregulated during cardiovascular development and provides novel avenues for diagnostic and therapeutic interventions, beneficial to fetuses at risk for CHDs.
The FASEB Journal | 2013
Anjali K. Nath; Lee D. Roberts; Yan Liu; Sari Mahon; Sonia Kim; Justine H. Ryu; Andreas A. Werdich; James L. Januzzi; Gerry R. Boss; Gary A. Rockwood; Calum A. MacRae; Matthew Brenner; Robert E. Gerszten; Randall T. Peterson
Exposure to cyanide causes a spectrum of cardiac, neurological, and metabolic dysfunctions that can be fatal. Improved cyanide antidotes are needed, but the ideal biological pathways to target are not known. To understand better the metabolic effects of cyanide and to discover novel cyanide antidotes, we developed a zebrafish model of cyanide exposure and scaled it for high‐throughput chemical screening. In a screen of 3120 small molecules, we discovered 4 novel antidotes that block cyanide toxicity. The most potent antidote was riboflavin. Metabolomic profiling of cyanide‐treated zebrafish revealed changes in bile acid and purine metabolism, most notably by an increase in inosine levels. Riboflavin normalizes many of the cyanide‐induced neurological and metabolic perturbations in zebrafish. The metabolic effects of cyanide observed in zebrafish were conserved in a rabbit model of cyanide toxicity. Further, humans treated with nitroprusside, a drug that releases nitric oxide and cyanide ions, display increased circulating bile acids and inosine. In summary, riboflavin may be a novel treatment for cyanide toxicity and prophylactic measure during nitroprusside treatment, inosine may serve as a biomarker of cyanide exposure, and metabolites in the bile acid and purine metabolism pathways may shed light on the pathways critical to reversing cyanide toxicity.—Nath, A. K., Roberts, L. D., Liu, Y., Mahon, S. B., Kim, S., Ryu, J. H., Werdich, A., Januzzi, J. L., Boss, G. R., Rockwood, G. A., MacRae, C. A., Brenner, M., Gerszten, R. E., Peterson, R. T. Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure. FASEB J. 27, 1928–1938 (2013). www.fasebj.org
Journal of Cell Biology | 2008
Anjali K. Nath; Rachel M. Brown; Michael Michaud; M. Rocio Sierra-Honigmann; Michael Snyder; Joseph A. Madri
Blood circulation is dependent on heart valves to direct blood flow through the heart and great vessels. Valve development relies on epithelial to mesenchymal transition (EMT), a central feature of embryonic development and metastatic cancer. Abnormal EMT and remodeling contribute to the etiology of several congenital heart defects. Leptin and its receptor were detected in the mouse embryonic heart. Using an ex vivo model of cardiac EMT, the inhibition of leptin results in a signal transducer and activator of transcription 3 and Snail/vascular endothelial cadherin–independent decrease in EMT and migration. Our data suggest that an Akt signaling pathway underlies the observed phenotype. Furthermore, loss of leptin phenocopied the functional inhibition of αvβ3 integrin receptor and resulted in decreased αvβ3 integrin and matrix metalloprotease 2, suggesting that the leptin signaling pathway is involved in adhesion and migration processes. This study adds leptin to the repertoire of factors that mediate EMT and, for the first time, demonstrates a role for the interleukin 6 family in embryonic EMT.
JCI insight | 2017
W. Taylor Kimberly; John O’Sullivan; Anjali K. Nath; Michelle J. Keyes; Xu Shi; Martin G. Larson; Qiong Yang; Michelle T. Long; Randall T. Peterson; Thomas J. Wang; Kathleen E. Corey; Robert E. Gerszten
The discovery of metabolite-phenotype associations may highlight candidate biomarkers and metabolic pathways altered in disease states. We sought to identify novel metabolites associated with obesity and one of its major complications, nonalcoholic fatty liver disease (NAFLD), using a liquid chromatography-tandem mass spectrometry method. In 997 individuals in Framingham Heart Study Generation 3 (FHS Gen 3), we identified an association between anandamide (AEA) and BMI. Further examination revealed that AEA was associated with radiographic hepatic steatosis. In a histologically defined NAFLD cohort, AEA was associated with NAFLD severity, the presence of nonalcoholic steatohepatitis, and fibrosis. These data highlight AEA as a marker linking cardiometabolic disease and NAFLD severity.