Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anjan Debnath is active.

Publication


Featured researches published by Anjan Debnath.


Nature Medicine | 2012

A high throughput drug screen for Entamoeba histolytica identifies a new lead and target

Anjan Debnath; Derek Parsonage; Rosa M. Andrade; Chen-chen He; Eduardo R. Cobo; Ken-ichi Hirata; Steven Chen; Guillermina García-Rivera; Esther Orozco; Máximo B. Martínez; Shamila S. Gunatilleke; Amy M. Barrios; Michelle R. Arkin; Leslie B. Poole; James H. McKerrow; Sharon L. Reed

Entamoeba histolytica, a protozoan intestinal parasite, is the causative agent of human amebiasis. Amebiasis is the fourth leading cause of death and the third leading cause of morbidity due to protozoan infections worldwide, resulting in ∼70,000 deaths annually. E. histolytica has been listed by the National Institutes of Health as a category B priority biodefense pathogen in the United States. Treatment relies on metronidazole, which has adverse effects, and potential resistance of E. histolytica to the drug is an increasing concern. To facilitate drug screening for this anaerobic protozoan, we developed and validated an automated, high-throughput screen (HTS). This screen identified auranofin, a US Food and Drug Administration (FDA)-approved drug used therapeutically for rheumatoid arthritis, as active against E. histolytica in culture. Auranofin was ten times more potent against E. histolytica than metronidazole. Transcriptional profiling and thioredoxin reductase assays suggested that auranofin targets the E. histolytica thioredoxin reductase, preventing the reduction of thioredoxin and enhancing sensitivity of trophozoites to reactive oxygen-mediated killing. In a mouse model of amebic colitis and a hamster model of amebic liver abscess, oral auranofin markedly decreased the number of parasites, the detrimental host inflammatory response and hepatic damage. This new use of auranofin represents a promising therapy for amebiasis, and the drug has been granted orphan-drug status from the FDA.


Antimicrobial Agents and Chemotherapy | 2013

A Reprofiled Drug, Auranofin, Is Effective against Metronidazole-Resistant Giardia lamblia

Noa Tejman-Yarden; Yukiko Miyamoto; David Leitsch; Jennifer Santini; Anjan Debnath; Jiri Gut; James H. McKerrow; Sharon L. Reed; Lars Eckmann

ABSTRACT Giardiasis is one of the most common causes of diarrheal disease worldwide. Treatment is primarily with 5-nitro antimicrobials, particularly metronidazole. Resistance to metronidazole has been described, and treatment failures can occur in up to 20% of cases, making development of alternative antigiardials an important goal. To this end, we have screened a chemical library of 746 approved human drugs and 164 additional bioactive compounds for activity against Giardia lamblia. We identified 56 compounds that caused significant inhibition of G. lamblia growth and attachment. Of these, 15 were previously reported to have antigiardial activity, 20 were bioactive but not approved for human use, and 21 were drugs approved for human use for other indications. One notable compound of the last group was the antirheumatic drug auranofin. Further testing revealed that auranofin was active in the low (4 to 6)-micromolar range against a range of divergent G. lamblia isolates representing both human-pathogenic assemblages A and B. Most importantly, auranofin was active against multiple metronidazole-resistant strains. Mechanistically, auranofin blocked the activity of giardial thioredoxin oxidoreductase, a critical enzyme involved in maintaining normal protein function and combating oxidative damage, suggesting that this inhibition contributes to the antigiardial activity. Furthermore, auranofin was efficacious in vivo, as it eradicated infection with different G. lamblia isolates in different rodent models. These results indicate that the approved human drug auranofin could be developed as a novel agent in the armamentarium of antigiardial drugs, particularly against metronidazole-resistant strains.


The Journal of Infectious Diseases | 2004

Identification of Genomic Responses to Collagen Binding by Trophozoites of Entamoeba histolytica

Anjan Debnath; Pradeep Das; Mohammed Sajid; James H. McKerrow

Attachment of Entamoeba histolytica trophozoites to collagen is a known stimulus for parasite activation, leading to subsequent tissue destruction and invasion. To identify cellular mechanisms of trophozoite activation, we assessed global variations in gene expression during collagen interaction with E. histolytica. A shotgun DNA microarray was constructed by use of 9600 random inserts from an E. histolytica genomic DNA library. Through differential hybridization, key differences between gene expression in collagen-activated trophozoites and that in nonactivated trophozoites were identified. Fourteen differentially regulated clones were reproducibly identified and selected for sequencing. Among the genes identified were those coding for (1) components of a signaling cascade that had been previously hypothesized to transmit responses to cell attachment, (2) adapter proteins for vesicle formation, and (3) proteins that are implicated in cytoskeletal reorganization and locomotion. Two known virulence-factor genes--those for cysteine proteinases and amebapore--also were up-regulated in response to collagen stimulation. These results provide important new clues about how a pathogen orchestrates responses to the host environment as well as a new tool for the analysis of other aspects of Entamoeba species infection and pathogenicity.


PLOS Neglected Tropical Diseases | 2015

Repurposing Auranofin as a Lead Candidate for Treatment of Lymphatic Filariasis and Onchocerciasis

Christina A. Bulman; Chelsea M. Bidlow; Sara Lustigman; Fidelis Cho-Ngwa; David L. Williams; Alberto A. Rascón; Nancy Tricoche; Moses Samje; Aaron Bell; Brian M. Suzuki; Kee-Chong Lim; Nonglak Supakorndej; Prasit Supakorndej; Alan R. Wolfe; Giselle M. Knudsen; Steven Chen; Chris Wilson; Kean-Hooi Ang; Michelle R. Arkin; Jiri Gut; Chris Franklin; Chris Marcellino; James H. McKerrow; Anjan Debnath; Judy A. Sakanari

Two major human diseases caused by filariid nematodes are onchocerciasis, or river blindness, and lymphatic filariasis, which can lead to elephantiasis. The drugs ivermectin, diethylcarbamazine (DEC), and albendazole are used in control programs for these diseases, but are mainly effective against the microfilarial stage and have minimal or no effect on adult worms. Adult Onchocerca volvulus and Brugia malayi worms (macrofilariae) can live for up to 15 years, reproducing and allowing the infection to persist in a population. Therefore, to support control or elimination of these two diseases, effective macrofilaricidal drugs are necessary, in addition to current drugs. In an effort to identify macrofilaricidal drugs, we screened an FDA-approved library with adult worms of Brugia spp. and Onchocerca ochengi, third-stage larvae (L3s) of Onchocerca volvulus, and the microfilariae of both O. ochengi and Loa loa. We found that auranofin, a gold-containing drug used for rheumatoid arthritis, was effective in vitro in killing both Brugia spp. and O. ochengi adult worms and in inhibiting the molting of L3s of O. volvulus with IC50 values in the low micromolar to nanomolar range. Auranofin had an approximately 43-fold higher IC50 against the microfilariae of L. loa compared with the IC50 for adult female O. ochengi, which may be beneficial if used in areas where Onchocerca and Brugia are co-endemic with L. loa, to prevent severe adverse reactions to the drug-induced death of L. loa microfilariae. Further testing indicated that auranofin is also effective in reducing Brugia adult worm burden in infected gerbils and that auranofin may be targeting the thioredoxin reductase in this nematode.


Gut microbes | 2013

Reprofiled drug targets ancient protozoans: drug discovery for parasitic diarrheal diseases.

Anjan Debnath; Momar Ndao; Sharon L. Reed

Recently, we developed a novel automated, high throughput screening (HTS) methodology for the anaerobic intestinal parasite Entamoeba histolytica. We validated this HTS platform by screening a chemical library containing US Food and Drug Administration (FDA)-approved drugs and bioactive compounds. We identified an FDA-approved drug, auranofin, as most active against E. histolytica both in vitro and in vivo. Our cell culture and animal studies indicated that thioredoxin reductase, an enzyme involved in reactive oxygen species detoxification, was the target for auranofin in E. histolytica. Here, we discuss the rationale for drug development for three parasites which are major causes of diarrhea worldwide, E. histolytica, Giardia lamblia and Cryptosporidium parvum and extend our current finding of antiparasitic activity of auranofin to Entamoeba cysts, G. lamblia and C. parvum. These studies support the use of HTS assays and reprofiling FDA-approved drugs for new therapy for neglected tropical diseases.


Antimicrobial Agents and Chemotherapy | 2012

Corifungin, a New Drug Lead against Naegleria, Identified from a High-Throughput Screen

Anjan Debnath; Josefino B. Tunac; Silvia Galindo-Gómez; Angélica Silva-Olivares; Mineko Shibayama; James H. McKerrow

ABSTRACT Primary amebic meningoencephalitis (PAM) is a rapidly fatal infection caused by the free-living ameba Naegleria fowleri. The drug of choice in treating PAM is the antifungal antibiotic amphotericin B, but its use is associated with severe adverse effects. Moreover, few patients treated with amphotericin B have survived PAM. Therefore, fast-acting and efficient drugs are urgently needed for the treatment of PAM. To facilitate drug screening for this pathogen, an automated, high-throughput screening methodology was developed and validated for the closely related species Naegleria gruberi. Five kinase inhibitors and an NF-kappaB inhibitor were hits identified in primary screens of three compound libraries. Most importantly for a preclinical drug discovery pipeline, we identified corifungin, a water-soluble polyene macrolide with a higher activity against Naegleria than that of amphotericin B. Transmission electron microscopy of N. fowleri trophozoites incubated with different concentrations of corifungin showed disruption of cytoplasmic and plasma membranes and alterations in mitochondria, followed by complete lysis of amebae. In vivo efficacy of corifungin in a mouse model of PAM was confirmed by an absence of detectable amebae in the brain and 100% survival of mice for 17 days postinfection for a single daily intraperitoneal dose of 9 mg/kg of body weight given for 10 days. The same dose of amphotericin B did not reduce ameba growth, and mouse survival was compromised. Based on these results, the U.S. FDA has approved orphan drug status for corifungin for the treatment of PAM.


Antimicrobial Agents and Chemotherapy | 2007

Bis-Acridines as Lead Antiparasitic Agents: Structure-Activity Analysis of a Discrete Compound Library In Vitro

Conor R. Caffrey; Dietmar Steverding; Ryan K. Swenerton; Ben L. Kelly; Deirdre Walshe; Anjan Debnath; Yuan-Min Zhou; Patricia S. Doyle; Aaron T. Fafarman; Julie A. Zorn; Kirkwood M. Land; Jessica Beauchene; Kimberly Schreiber; Heidrun Moll; Tanja Schirmeister; Ahilan Saravanamuthu; Alan H. Fairlamb; Fred E. Cohen; James H. McKerrow; Jennifer L. Weisman; Barnaby C. H. May

ABSTRACT Parasitic diseases are of enormous public health significance in developing countries—a situation compounded by the toxicity of and resistance to many current chemotherapeutics. We investigated a focused library of 18 structurally diverse bis-acridine compounds for in vitro bioactivity against seven protozoan and one helminth parasite species and compared the bioactivities and the cytotoxicities of these compounds toward various mammalian cell lines. Structure-activity relationships demonstrated the influence of both the bis-acridine linker structure and the terminal acridine heterocycle on potency and cytotoxicity. The bioactivity of polyamine-linked acridines required a minimum linker length of approximately 10 Å. Increasing linker length resulted in bioactivity against most parasites but also cytotoxicity toward mammalian cells. N alkylation, but less so N acylation, of the polyamine linker ameliorated cytotoxicity while retaining bioactivity with 50% effective concentration (EC50) values similar to or better than those measured for standard drugs. Substitution of the polyamine for either an alkyl or a polyether linker maintained bioactivity and further alleviated cytotoxicity. Polyamine-linked compounds in which the terminal acridine heterocycle had been replaced with an aza-acridine also maintained acceptable therapeutic indices. The most potent compounds recorded low- to mid-nanomolar EC50 values against Plasmodium falciparum and Trypanosoma brucei; otherwise, low-micromolar potencies were measured. Importantly, the bioactivity of the library was independent of P. falciparum resistance to chloroquine. Compound bioactivity was a function of neither the potential to bis-intercalate DNA nor the inhibition of trypanothione reductase, an important drug target in trypanosomatid parasites. Our approach illustrates the usefulness of screening focused compound libraries against multiple parasite targets. Some of the bis-acridines identified here may represent useful starting points for further lead optimization.


Antimicrobial Agents and Chemotherapy | 2014

Hsp90 Inhibitors as New Leads to Target Parasitic Diarrheal Diseases

Anjan Debnath; Dea Shahinas; Clifford Bryant; Ken Hirata; Yukiko Miyamoto; Grace M. Hwang; Jiri Gut; Adam R. Renslo; Dylan R. Pillai; Lars Eckmann; Sharon L. Reed; James H. McKerrow

ABSTRACT Entamoeba histolytica and Giardia lamblia are anaerobic protozoan parasites that cause amebiasis and giardiasis, two of the most common diarrheal diseases worldwide. Current therapy relies on metronidazole, but resistance has been reported and the drug has significant adverse effects. Therefore, it is critical to search for effective, better-tolerated antiamebic and antigiardial drugs. We synthesized several examples of a recently reported class of Hsp90 inhibitors and evaluated these compounds as potential leads for antiparasitic chemotherapy. Several of these inhibitors showed strong in vitro activity against both E. histolytica and G. lamblia trophozoites. The inhibitors were rescreened to discriminate between amebicidal and giardicidal activity and general cytotoxicity toward a mammalian cell line. No mammalian cytotoxicity was found at >100 μM for 48 h for any of the inhibitors. To understand the mechanism of action, a competitive binding assay was performed using the fluorescent ATP analogue bis-ANS (4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid dipotassium salt) and recombinant E. histolytica Hsp90 preincubated in both the presence and absence of Hsp90 inhibitors. There was significant reduction in fluorescence compared to the level in the control, suggesting that E. histolytica Hsp90 is a selective target. The in vivo efficacy and safety of one Hsp90 inhibitor in a mouse model of amebic colitis and giardiasis was demonstrated by significant inhibition of parasite growth at a single oral dose of 5 mg/kg of body weight/day for 7 days and 10 mg/kg/day for 3 days. Considering the results for in vitro activity and in vivo efficacy, Hsp90 inhibitors represent a promising therapeutic option for amebiasis and giardiasis.


European Journal of Medicinal Chemistry | 2016

Nitroimidazole carboxamides as antiparasitic agents targeting Giardia lamblia, Entamoeba histolytica and Trichomonas vaginalis

Angie M. Jarrad; Anjan Debnath; Yukiko Miyamoto; Karl A. Hansford; Ruby Pelingon; Mark S. Butler; Trpta Bains; Tomislav Karoli; Mark A. T. Blaskovich; Lars Eckmann; Matthew A. Cooper

Diarrhoeal diseases caused by the intestinal parasites Giardia lamblia and Entamoeba histolytica constitute a major global health burden. Nitroimidazoles are first-line drugs for the treatment of giardiasis and amebiasis, with metronidazole 1 being the most commonly used drug worldwide. However, treatment failures in giardiasis occur in up to 20% of cases and development of resistance to metronidazole is of concern. We have re-examined ‘old’ nitroimidazoles as a foundation for the systematic development of next-generation derivatives. Using this approach, derivatisation of the nitroimidazole carboxamide scaffold provided improved antiparasitic agents. Thirty-three novel nitroimidazole carboxamides were synthesised and evaluated for activity against G. lamblia and E. histolytica. Several of the new compounds exhibited potent activity against G. lamblia strains, including metronidazole-resistant strains of G. lamblia (EC50 = 0.1–2.5 μM cf. metronidazole EC50 = 6.1–18 μM). Other compounds showed improved activity against E. histolytica (EC50 = 1.7–5.1 μM cf. metronidazole EC50 = 5.0 μM), potent activity against Trichomonas vaginalis (EC50 = 0.6–1.4 μM cf. metronidazole EC50 = 0.8 μM) and moderate activity against the intestinal bacterial pathogen Clostridium difficile (0.5–2 μg/mL, cf. metronidazole = 0.5 μg/mL). The new compounds had low toxicity against mammalian kidney and liver cells (CC50 > 100 μM), and selected antiparasitic hits were assessed for human plasma protein binding and metabolic stability in liver microsomes to demonstrate their therapeutic potential.


Journal of Structural Biology | 2016

X-Ray Structures of Thioredoxin and Thioredoxin Reductase from Entamoeba Histolytica and Prevailing Hypothesis of the Mechanism of Auranofin Action.

Derek Parsonage; Fang Sheng; Ken Hirata; Anjan Debnath; James H. McKerrow; Sharon L. Reed; Ruben Abagyan; Leslie B. Poole; Larissa M. Podust

The anti-arthritic gold-containing drug Auranofin is lethal to the protozoan intestinal parasite Entamoeba histolytica, the causative agent of human amebiasis, in both culture and animal models of the disease. A putative mechanism of Auranofin action proposes that monovalent gold, Au(I), released from the drug, can bind to the redox-active dithiol group of thioredoxin reductase (TrxR). Au(I) binding in the active site is expected to prevent electron transfer to the downstream substrate thioredoxin (Trx), thus interfering with redox homeostasis in the parasite. To clarify the molecular mechanism of Auranofin action in more detail, we determined a series of atomic resolution X-ray structures for E. histolytica thioredoxin (EhTrx) and thioredoxin reductase (EhTrxR), the latter with and without Auranofin. Only the disulfide-bonded form of the active site dithiol (Cys(140)-Cys(143)) was invariably observed in crystals of EhTrxR in spite of the addition of reductants in various crystallization trials, and no gold was found associated with these cysteines. Non-catalytic Cys(286) was identified as the only site of modification, but further mutagenesis studies using the C286Q mutant demonstrated that this site was not responsible for inhibition of EhTrxR by Auranofin. Interestingly, we obtained both of the catalytically-relevant conformations of this bacterial-like, low molecular weight TrxR in crystals without requiring an engineered disulfide linkage between Cys mutants of TrxR and Trx (as was originally done with Escherichia coli TrxR and Trx). We note that the -CXXC- catalytic motif, even if reduced, would likely not provide space sufficient to bind Au(I) by both cysteines of the dithiol group.

Collaboration


Dive into the Anjan Debnath's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sharon L. Reed

University of California

View shared research outputs
Top Co-Authors

Avatar

Jiri Gut

University of California

View shared research outputs
Top Co-Authors

Avatar

Lars Eckmann

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mineko Shibayama

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Pradeep Das

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ken Hirata

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge