Anjan Dutta
Autonomous University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anjan Dutta.
International Journal on Document Analysis and Recognition | 2012
Alicia Fornés; Anjan Dutta; Albert Gordo; Josep Lladós
The analysis of music scores has been an active research field in the last decades. However, there are no publicly available databases of handwritten music scores for the research community. In this paper, we present the CVC-MUSCIMA database and ground truth of handwritten music score images. The dataset consists of 1,000 music sheets written by 50 different musicians. It has been especially designed for writer identification and staff removal tasks. In addition to the description of the dataset, ground truth, partitioning, and evaluation metrics, we also provide some baseline results for easing the comparison between different approaches.
International Journal of Pattern Recognition and Artificial Intelligence | 2012
Josep Lladós; Marçal Rusiñol; Alicia Fornés; David Pradas Fernandez; Anjan Dutta
Word spotting is the process of retrieving all instances of a queried keyword from a digital library of document images. In this paper we evaluate the performance of different word descriptors to assess the advantages and disadvantages of statistical and structural models in a framework of query-by-example word spotting in historical documents. We compare four word representation models, namely sequence alignment using DTW as a baseline reference, a bag of visual words approach as statistical model, a pseudo-structural model based on a Loci features representation, and a structural approach where words are represented by graphs. The four approaches have been tested with two collections of historical data: the George Washington database and the marriage records from the Barcelona Cathedral. We experimentally demonstrate that statistical representations generally give a better performance, however it cannot be neglected that large descriptors are difficult to be implemented in a retrieval scenario where word spotting requires the indexation of data with million word images.
international conference on document analysis and recognition | 2011
Alicia Fornés; Anjan Dutta; Albert Gordo; Josep Lladós
In the last years, there has been a growing interest in the analysis of handwritten music scores. In this sense, our goal has been to foster the interest in the analysis of handwritten music scores by the proposal of two different competitions: Staff removal and Writer Identification. Both competitions have been tested on the CVC-MUSCIMA database: a ground-truth of handwritten music score images. This paper describes the competition details, including the dataset and ground-truth, the evaluation metrics, and a short description of the participants, their methods, and the obtained results.
international conference on pattern recognition | 2010
Anjan Dutta; Umapada Pal; Alicia Fornés; Josep Lladós
Staff removal is an important preprocessing step of the Optical Music Recognition (OMR). The process aims to remove the stafflines from a musical document and retain only the musical symbols, later these symbols are used effectively to identify the music information. This paper proposes a simple but robust method to remove stafflines from printed musical scores. In the proposed methodology we have considered a staffline segment as a horizontal linkage of vertical black runs with uniform height. We have used the neighbouring properties of a staffline segment to validate it as a true segment. We have considered the dataset along with the deformations described in \cite{ex8} for evaluation purpose. From experimentation we have got encouraging results.
Multimedia Tools and Applications | 2014
Palaiahnakote Shivakumara; Anjan Dutta; Chew Lim Tan; Umapada Pal
In this paper, we address two complex issues: 1) Text frame classification and 2) Multi-oriented text detection in video text frame. We first divide a video frame into 16 blocks and propose a combination of wavelet and median-moments with k-means clustering at the block level to identify probable text blocks. For each probable text block, the method applies the same combination of feature with k-means clustering over a sliding window running through the blocks to identify potential text candidates. We introduce a new idea of symmetry on text candidates in each block based on the observation that pixel distribution in text exhibits a symmetric pattern. The method integrates all blocks containing text candidates in the frame and then all text candidates are mapped on to a Sobel edge map of the original frame to obtain text representatives. To tackle the multi-orientation problem, we present a new method called Angle Projection Boundary Growing (APBG) which is an iterative algorithm and works based on a nearest neighbor concept. APBG is then applied on the text representatives to fix the bounding box for multi-oriented text lines in the video frame. Directional information is used to eliminate false positives. Experimental results on a variety of datasets such as non-horizontal, horizontal, publicly available data (Hua’s data) and ICDAR-03 competition data (camera images) show that the proposed method outperforms existing methods proposed for video and the state of the art methods for scene text as well.
Pattern Recognition | 2011
Palaiahnakote Shivakumara; Anjan Dutta; Trung Quy Phan; Chew Lim Tan; Umapada Pal
In the field of multimedia retrieval in video, text frame classification is essential for text detection, event detection, event boundary detection, etc. We propose a new text frame classification method that introduces a combination of wavelet and median moment with k-means clustering to select probable text blocks among 16 equally sized blocks of a video frame. The same feature combination is used with a new Max-Min clustering at the pixel level to choose probable dominant text pixels in the selected probable text blocks. For the probable text pixels, a so-called mutual nearest neighbor based symmetry is explored with a four-quadrant formation centered at the centroid of the probable dominant text pixels to know whether a block is a true text block or not. If a frame produces at least one true text block then it is considered as a text frame otherwise it is a non-text frame. Experimental results on different text and non-text datasets including two public datasets and our own created data show that the proposed method gives promising results in terms of recall and precision at the block and frame levels. Further, we also show how existing text detection methods tend to misclassify non-text frames as text frames in term of recall and precision at both the block and frame levels.
graphics recognition | 2013
Alicia Fornés; Van Cuong Kieu; Muriel Visani; Nicholas Journet; Anjan Dutta
The first competition on music scores that was organized at ICDAR and GREC in 2011 awoke the interest of researchers, who participated in both staff removal and writer identification tasks. In this second edition, we focus on the staff removal task and simulate a real case scenario concerning old and degraded music scores. For this purpose, we have generated a new set of semi-synthetic images using two degradation models that we previously introduced: local noise and 3D distortions. In this extended paper we provide an extended description of the dataset, degradation models, evaluation metrics, the participant’s methods and the obtained results that could not be presented at ICDAR and GREC proceedings due to page limitations.
Pattern Recognition | 2013
Anjan Dutta; Josep Lladós; Umapada Pal
In this paper we propose a symbol spotting technique in graphical documents. Graphs are used to represent the documents and a (sub)graph matching technique is used to detect the symbols in them. We propose a graph serialization to reduce the usual computational complexity of graph matching. Serialization of graphs is performed by computing acyclic graph paths between each pair of connected nodes. Graph paths are one-dimensional structures of graphs which are less expensive in terms of computation. At the same time they enable robust localization even in the presence of noise and distortion. Indexing in large graph databases involves a computational burden as well. We propose a graph factorization approach to tackle this problem. Factorization is intended to create a unified indexed structure over the database of graphical documents. Once graph paths are extracted, the entire database of graphical documents is indexed in hash tables by locality sensitive hashing (LSH) of shape descriptors of the paths. The hashing data structure aims to execute an approximate k-NN search in a sub-linear time. We have performed detailed experiments with various datasets of line drawings and compared our method with the state-of-the-art works. The results demonstrate the effectiveness and efficiency of our technique.
international conference on document analysis and recognition | 2011
Anjan Dutta; Josep Lladós; Umapada Pal
In this paper we propose a symbol spotting technique through hashing the shape descriptors of graph paths (Hamiltonian paths). Complex graphical structures in line drawings can be efficiently represented by graphs, which ease the accurate localization of the model symbol. Graph paths are the factorized substructures of graphs which enable robust recognition even in the presence of noise and distortion. In our framework, the entire database of the graphical documents is indexed in hash tables by the locality sensitive hashing (LSH) of shape descriptors of the paths. The hashing data structure aims to execute an approximate k-NN search in a sub-linear time. The spotting method is formulated by a spatial voting scheme to the list of locations of the paths that are decided during the hash table lookup process. We perform detailed experiments with various dataset of line drawings and the results demonstrate the effectiveness and efficiency of the technique.
document analysis systems | 2010
Palaiahnakote Shivakumara; Anjan Dutta; Chew Lim Tan; Umapada Pal
In this paper, we present a new method based on wavelet-median-moments and a novel idea of angle projection for detecting multi-oriented text in video. The proposed method uses wavelet decomposition first to obtain three high frequency sub-bands (LH, HL and HH) and then median moments are computed on the average sub-bands of the three high frequency sub-bands to brighten the text pixels. K-means clustering (K=2) is used for obtaining text pixels from the wavelet-median-moments features (WMMF). Text candidates are obtained by mapping the output of K-means on Sobel edge map of the original input frame. To deal with multi-oriented text, we introduce a new idea of Angle Projection (AP) based on boundary growing and nearest neighbor concepts from the text candidates instead of conventional projection profiles. The proposed method is experimented on horizontal text data, non-horizontal text data, temporal data, non-text data and camera based images (scene text data of ICDAR 2003 competition) to show that the proposed method is superior to existing methods.