Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anjana Bali is active.

Publication


Featured researches published by Anjana Bali.


The Korean Journal of Physiology and Pharmacology | 2014

Advanced Glycation End Products and Diabetic Complications

Varun Parkash Singh; Anjana Bali; Nirmal Singh; Amteshwar Singh Jaggi

During long standing hyperglycaemic state in diabetes mellitus, glucose forms covalent adducts with the plasma proteins through a non-enzymatic process known as glycation. Protein glycation and formation of advanced glycation end products (AGEs) play an important role in the pathogenesis of diabetic complications like retinopathy, nephropathy, neuropathy, cardiomyopathy along with some other diseases such as rheumatoid arthritis, osteoporosis and aging. Glycation of proteins interferes with their normal functions by disrupting molecular conformation, altering enzymatic activity, and interfering with receptor functioning. AGEs form intra- and extracellular cross linking not only with proteins, but with some other endogenous key molecules including lipids and nucleic acids to contribute in the development of diabetic complications. Recent studies suggest that AGEs interact with plasma membrane localized receptors for AGEs (RAGE) to alter intracellular signaling, gene expression, release of pro-inflammatory molecules and free radicals. The present review discusses the glycation of plasma proteins such as albumin, fibrinogen, globulins and collagen to form different types of AGEs. Furthermore, the role of AGEs in the pathogenesis of diabetic complications including retinopathy, cataract, neuropathy, nephropathy and cardiomyopathy is also discussed.


Archives of Pharmacal Research | 2013

Implications and mechanism of action of gabapentin in neuropathic pain

Ankesh Kukkar; Anjana Bali; Nirmal Singh; Amteshwar Singh Jaggi

Gabapentin is an anti-epileptic agent but now it is also recommended as first line agent in neuropathic pain, particularly in diabetic neuropathy and post herpetic neuralgia. α2δ-1, an auxillary subunit of voltage gated calcium channels, has been documented as its main target and its specific binding to this subunit is described to produce different actions responsible for pain attenuation. The binding to α2δ-1 subunits inhibits nerve injury-induced trafficking of α1 pore forming units of calcium channels (particularly N-type) from cytoplasm to plasma membrane (membrane trafficking) of pre-synaptic terminals of dorsal root ganglion (DRG) neurons and dorsal horn neurons. Furthermore, the axoplasmic transport of α2δ-1 subunits from DRG to dorsal horns neurons in the form of anterograde trafficking is also inhibited in response to gabapentin administration. Gabapentin has also been shown to induce modulate other targets including transient receptor potential channels, NMDA receptors, protein kinase C and inflammatory cytokines. It may also act on supra-spinal region to stimulate noradrenaline mediated descending inhibition, which contributes to its anti-hypersensitivity action in neuropathic pain.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2014

Multifunctional aspects of allopregnanolone in stress and related disorders

Anjana Bali; Amteshwar Singh Jaggi

Allopregnanolone (3α-hydroxy-5α-pregnan-20-one) is a major cholesterol-derived neurosteroid in the central nervous system and is synthesized from progesterone by steroidogenic enzymes, 5α-reductase (the rate-limiting enzyme) and 3α-hydroxysteroid dehydrogenase. The pathophysiological role of allopregnanolone in neuropsychiatric disorders has been highlighted in several investigations. The changes in neuroactive steroid levels are detected in stress and stress-related disorders including anxiety, panic and depression. The changes in allopregnanolone in response to acute stressor tend to restore the homeostasis by dampening the hyper-activated HPA axis. However, long standing stressors leading to development of neuropsychiatric disorders including depression and anxiety are associated with decrease in the allopregnanolone levels. GABAA receptor complex has been considered as the primary target of allopregnanolone and majority of its inhibitory actions are mediated through GABA potentiation or direct activation of GABA currents. The role of progesterone receptors in producing the late actions of allopregnanolone particularly in lordosis facilitation has also been described. Moreover, recent studies have also described the involvement of other multiple targets including brain-derived neurotrophic factor (BDNF), glutamate, dopamine, opioids, oxytocin, and calcium channels. The present review discusses the various aspects of allopregnanolone in stress and stress-related disorders including anxiety, depression and panic.


Pharmacological Research | 2013

Angiotensin as stress mediator: Role of its receptor and interrelationships among other stress mediators and receptors

Anjana Bali; Amteshwar Singh Jaggi

The involvement of renin-angiotensin system (RAS) and its active peptides, particularly angiotensin II (Ang II), has been described not only in hypertension, but also in stress-associated anxiety disorders. Ang II and its two subtypes of receptors, viz. AT1 and AT2, are localized on stress-responsive brain areas including the hypothalamus-adrenal-pituitary (HPA) axis. The different types of stressors increase the levels of Ang II and change the expression of its receptors. Transgenic animals with a centrally inactivated angiotensin system demonstrate increased anxiety-related behavior describing the anxiolytic effects of basal Ang II. However, studies showing the anxiolytic potential of AT1 receptor antagonists have described the anxiogenic effects of endogenously released Ang II. It suggests that the basal Ang II (in low amount) may attenuate anxiety, while stress-released Ang II (in high amount) may produce anxiety. By employing AT2-deficient mice, the functional role of AT2 receptors in attenuating stress-associated anxiety has been described. Moreover, AT1 receptor antagonists-induced anti-anxiety effects are associated with up-regulation of AT2 receptors in the brain suggesting that the centrally acting AT2 receptor agonists may serve as potential anxiolytic agents. The present review discusses the dual role of Ang II and its receptors in the development of stress-associated anxiety along with its interrelationship with benzodiazepines (BZD) receptors, and other stress mediators including corticotrophin releasing hormone (CRH) and serotonin (5-HT).


Neuroscience & Biobehavioral Reviews | 2015

Stress and opioids: Role of opioids in modulating stress-related behavior and effect of stress on morphine conditioned place preference

Anjana Bali; Puneet Kaur Randhawa; Amteshwar Singh Jaggi

Research studies have defined the important role of endogenous opioids in modulating stress-associated behavior. The release of β-endorphins in the amygdala in response to stress helps to cope with a stressor by inhibiting the over-activation of HPA axis. Administration of mu opioid agonists reduces the risk of developing post-traumatic stress disorder (PTSD) following a traumatic event by inhibiting fear-related memory consolidation. Similarly, the release of endogenous enkephalin and nociceptin in the basolateral amygdala and the nucleus accumbens tends to produce the anti-stress effects. An increase in dynorphin levels during prolonged exposure to stress may produce learned helplessness, dysphoria and depression. Stress also influences morphine-induced conditioned place preference (CPP) depending upon the intensity and duration of the stressor. Acute stress inhibits morphine CPP, while chronic stress potentiates CPP. The development of dysphoria due to increased dynorphin levels may contribute to chronic stress-induced potentiation of morphine CPP. The activation of ERK/cyclic AMP responsive element-binding (CREB) signaling in the mesocorticolimbic area, glucocorticoid receptors in the basolateral amygdala, and norepinephrine and galanin system in the nucleus accumbens may decrease the acute stress-induced inhibition of morphine CPP. The increase in dopamine levels in the nucleus accumbens and augmentation of GABAergic transmission in the median prefrontal cortex may contribute in potentiating morphine CPP. Stress exposure reinstates the extinct morphine CPP by activating the orexin receptors in the nucleus accumbens, decreasing the oxytocin levels in the lateral septum and amygdala, and altering the GABAergic transmission (activation of GABAA and inactivation of GABAB receptors). The present review describes these varied interactions between opioids and stress along with the possible mechanism.


European Journal of Pharmacology | 2015

Preclinical experimental stress studies: Protocols, assessment and comparison

Anjana Bali; Amteshwar Singh Jaggi

Stress is a state of threatened homeostasis during which a variety of adaptive processes are activated to produce physiological and behavioral changes. Preclinical models are pivotal for understanding these physiological or pathophysiological changes in the body in response to stress. Furthermore, these models are also important for the development of novel pharmacological agents for stress management. The well described preclinical stress models include immobilization, restraint, electric foot shock and social isolation stress. Stress assessment in animals is done at the behavioral level using open field, social interaction, hole board test; at the biochemical level by measuring plasma corticosterone and ACTH; at the physiological level by measuring food intake, body weight, adrenal gland weight and gastric ulceration. Furthermore the comparison between different stressors including electric foot shock, immobilization and cold stressor is described in terms of intensity, hormonal release, protein changes in brain, adaptation and sleep pattern. This present review describes these preclinical stress protocols, and stress assessment at different levels.


European Journal of Pharmacology | 2015

RIPC for multiorgan salvage in clinical settings: evolution of concept, evidences and mechanisms.

Puneet Kaur Randhawa; Anjana Bali; Amteshwar Singh Jaggi

Ischemic preconditioning is an intrinsic process in which preconditioning ischemia (ischemia of shorter duration) protects the organs against the subsequent index ischemia (sustained ischemia). Remote ischemic preconditioning (RIPC) is an innovative treatment approach in which interspersed cycles of preconditioning ischemia followed by reperfusion to a remote organ (other than target organ) protect the target organ against index ischemia and reperfusion-induced injury. RIPC of various organs to provide multi-organ salvage became a successful approach in numerous species of animals. Consequently, the concept of RIPC evolved in clinical setups, and provided beneficial effects in alleviating ischemia-reperfusion-induced injury in various remote organs, including myocardium. Clinically, RIPC stimulus is generally delivered by inflating the blood pressure cuff tied on the upper arm 20 mm greater than the systolic blood pressure, rendering the forearm ischemic for 5 min, followed 5 min reperfusion by deflating the cuff. This cycle is repeated for 3-4 consecutive periods to precondition the tissue and improve the survival. The institution of RIPC is beneficial in mitigating myocardial injury in patients undergoing various surgical interventions including coronary artery bypass graft surgery, abdominal aortic aneurysm repair, percutaneous coronary intervention, heart valve surgery, drug-eluting stent implantation, kidney transplantation, elective decompression surgery. The involvement of hypoxia inducible factor-1α (HIF-1α), ATP-sensitive potassium channels, signal transducer and activator of transcription (STAT), matrix metalloproteinases, O-linked β-N-acetylglucosamine (O-GlcNAc) levels, autonomous nervous system in mediating RIPC-induced cardioprotective effects has been explored clinically. However, comprehensive studies are required to elucidate the other possible mechanisms responsible for producing multi-organ protection during RIPC.


Reviews in The Neurosciences | 2015

Clinical experimental stress studies: methods and assessment.

Anjana Bali; Amteshwar Singh Jaggi

Abstract Stress is a state of threatened homeostasis during which a variety of adaptive processes are activated to produce physiological and behavioral changes. Stress induction methods are pivotal for understanding these physiological or pathophysiological changes in the body in response to stress. Furthermore, these methods are also important for the development of novel pharmacological agents for stress management. The well-described methods to induce stress in humans include the cold pressor test, Trier Social Stress Test, Montreal Imaging Stress Task, Maastricht Acute Stress Test, CO2 challenge test, Stroop test, Paced Auditory Serial Addition Task, noise stress, and Mannheim Multicomponent Stress Test. Stress assessment in humans is done by measuring biochemical markers such as cortisol, cortisol awakening response, dexamethasone suppression test, salivary α-amylase, plasma/urinary norepinephrine, norepinephrine spillover rate, and interleukins. Physiological and behavioral changes such as galvanic skin response, heart rate variability, pupil size, and muscle and/or skin sympathetic nerve activity (microneurography) and cardiovascular parameters such as heart rate, blood pressure, and self-reported anxiety are also monitored to assess stress response. This present review describes these commonly employed methods to induce stress in humans along with stress assessment methods.


Current Drug Targets | 2016

An Integrative Review on Role and Mechanisms of Ghrelin in Stress, Anxiety and Depression

Anjana Bali; Amteshwar Singh Jaggi

Ghrelin is orexigenic hormone primarily synthesized by endocrine X/A-like cells of gastric oxyntic mucosa to stimulate appetite and food intake along with regulation of growth hormone and insulin secretion; glucose and lipid metabolism; gastrointestinal motility; blood pressure, heart rate and neurogenesis. Furthermore, peripherally (after crossing the blood brain barrier) as well as centrally synthesized ghrelin (in the hypothalamus) regulates diverse functions of central nervous system including stress-associated behavioral functions. Exposure to stress alters the ghrelin levels and alteration in ghrelin levels significantly affects neuro-endocrinological parameters; metabolism-related physiology, behavior and mood. Studies have shown both anxiolytic and anxiogenic role of ghrelin suggesting its dual role in modulating anxiety-related behavior. However, it is proposed that increase in ghrelin levels during stress condition is an endogenous stress coping behavior and increased ghrelin levels may be required to prevent excessive anxiety. In preclinical and clinical studies, an elevation in ghrelin levels during depression has been correlated with their antidepressant activities. Ghrelin-induced modulation of stress and associated conditions has been linked to alteration in hypothalamic-pituitary-adrenal (HPA) axis; autonomic nervous system (mainly sympathetic nervous system and serotonergic neurotransmission. A reciprocal relationship has been reported between corticotropin-releasing hormone (CRH) and ghrelin as ghrelin increases the release of CRH, ACTH and corticosteroids; while CRH decreases the expression of ghrelin. Similarly, ghrelin increases the serotonin turnover and in turn, serotonin controls ghrelin signaling to modulate anxiety-related behavior. The present review discusses the dual role of ghrelin in stress and related behavioral disorders along with possible mechanisms.


Journal of the Renin-Angiotensin-Aldosterone System | 2013

Investigations into mild electric foot shock stress-induced cognitive enhancement: possible role of angiotensin neuropeptides

Anjana Bali; Nirmal Singh; Amteshwar Singh Jaggi

This study was designed to investigate the role of angiotensin neuropeptides in mild electric foot shock stress-induced cognitive enhancement in mice. Mild stress was induced by applying mild electric foot shocks of 0.15 mA intensity for 0.5 s. The stress-induced alteration in cognition was assessed using a Morris water maze test. The animals were subjected to mild electric foot shocks 5 min before we recorded escape latency time (ELT), an index of learning, during the first 4 days of a 5-day trial in the Morris water maze. The time spent in target quadrant (TSTQ), an index of retrieval, was noted on the fifth day without prior administration of electric foot shock. The angiotensin-converting enzyme inhibitor lisinopril (5, 10 and 20 mg/kg), and telmisartan (1, 2 and 5 mg/kg), an angiotensin II receptor blocker, were employed to assess the role of angiotensin neuropeptides. The application of mild electric shocks significantly decreased ELT and increased TSTQ, indicating enhancement in stress-induced learning and memory. However, administration of lisinopril and telmisartan significantly attenuated the stress-induced decrease in ELT and increase in TSTQ. It may be concluded that mild electric foot shock-induced stress triggers the release of angiotensin neuropeptides that may be responsible for memory enhancement.

Collaboration


Dive into the Anjana Bali's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge