Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anje Cauwels is active.

Publication


Featured researches published by Anje Cauwels.


Cell Death and Disease | 2017

Extracellular ATP drives systemic inflammation, tissue damage and mortality

Anje Cauwels; Elke Rogge; Benjamin Vandendriessche; Sruti Shiva; Peter Brouckaert

Systemic inflammatory response syndromes (SIRS) may be caused by both infectious and sterile insults, such as trauma, ischemia-reperfusion or burns. They are characterized by early excessive inflammatory cytokine production and the endogenous release of several toxic and damaging molecules. These are necessary to fight and resolve the cause of SIRS, but often end up progressively damaging cells and tissues, leading to life-threatening multiple organ dysfunction syndrome (MODS). As inflammasome-dependent cytokines such as interleukin-1β are critically involved in the development of MODS and death in SIRS, and ATP is an essential activator of inflammasomes in vitro, we decided to analyze the ability of ATP removal to prevent excessive tissue damage and mortality in a murine LPS-induced inflammation model. Our results indeed indicate an important pro-inflammatory role for extracellular ATP. However, the effect of ATP is not restricted to inflammasome activation at all. Removing extracellular ATP with systemic apyrase treatment not only prevented IL-1β accumulation but also the production of inflammasome-independent cytokines such as TNF and IL-10. In addition, ATP removal also prevented systemic evidence of cellular disintegration, mitochondrial damage, apoptosis, intestinal barrier disruption and even mortality. Although blocking ATP receptors with the broad-spectrum P2 purinergic receptor antagonist suramin imitated certain beneficial effects of apyrase treatment, it could not prevent morbidity or mortality at all. We conclude that removal of systemic extracellular ATP could be a valuable strategy to dampen systemic inflammatory damage and toxicity in SIRS.


American Journal of Respiratory and Critical Care Medicine | 2014

Simultaneous Targeting of IL-1 and IL-18 Is Required for Protection against Inflammatory and Septic Shock

Tom Vanden Berghe; Dieter Demon; Pieter Bogaert; Benjamin Vandendriessche; Alain Goethals; Bart Depuydt; Marnik Vuylsteke; Ria Roelandt; Elien Van Wonterghem; Jill Vandenbroecke; Sze Men Choi; Evelyne Meyer; Stefan Krautwald; Wim Declercq; Nozomi Takahashi; Anje Cauwels; Peter Vandenabeele

RATIONALEnSepsis is one of the leading causes of death around the world. The failure of clinical trials to treat sepsis demonstrates that the molecular mechanisms are multiple and are still insufficiently understood.nnnOBJECTIVESnTo clarify the long disputed hierarchical contribution of several central inflammatory mediators (IL-1β, IL-18, caspase [CASP] 7, CASP1, and CASP11) in septic shock and to explore their therapeutic potential.nnnMETHODSnLPS- and tumor necrosis factor (TNF)-induced lethal shock, and cecal ligation and puncture (CLP) were performed in genetically or pharmacologically targeted mice. Body temperature and survival were monitored closely, and plasma was analyzed for several markers of cellular disintegration and inflammation.nnnMEASUREMENTS AND MAIN RESULTSnInterestingly, deficiency of both IL-1β and IL-18 additively prevented LPS-induced mortality. The detrimental role of IL-1β and IL-18 was confirmed in mice subjected to a lethal dose of TNF, or to a lethal CLP procedure. Although their upstream activator, CASP1, and its amplifier, CASP11, are considered potential therapeutic targets because of their crucial involvement in endotoxin-induced toxicity, CASP11- or CASP1/11-deficient mice were not, or hardly, protected against a lethal TNF or CLP challenge. In line with our results obtained in genetically deficient mice, only the combined neutralization of IL-1 and IL-18, using the IL-1 receptor antagonist anakinra and anti-IL-18 antibodies, conferred complete protection against endotoxin-induced lethality.nnnCONCLUSIONSnOur data point toward the therapeutic potential of neutralizing IL-1 and IL-18 simultaneously in sepsis, rather than inhibiting the upstream inflammatory caspases.


Nature Communications | 2015

Cardiovascular and pharmacological implications of haem-deficient NO-unresponsive soluble guanylate cyclase knock-in mice

Robrecht Thoonen; Anje Cauwels; Kelly Decaluwé; Sandra Geschka; Robert Tainsh; Joris R. Delanghe; Tino Hochepied; Lode De Cauwer; Elke Rogge; Sofie Voet; Patrick Sips; Richard H. Karas; Kenneth D. Bloch; Marnik Vuylsteke; Johannes-Peter Stasch; Johan Van de Voorde; Emmanuel Buys; Peter Brouckaert

Oxidative stress, a central mediator of cardiovascular disease, results in loss of the prosthetic haem group of soluble guanylate cyclase (sGC), preventing its activation by nitric oxide (NO). Here we introduce Apo-sGC mice expressing haem-free sGC. Apo-sGC mice are viable and develop hypertension. The haemodynamic effects of NO are abolished, but those of the sGC activator cinaciguat are enhanced in apo-sGC mice, suggesting that the effects of NO on smooth muscle relaxation, blood pressure regulation and inhibition of platelet aggregation require sGC activation by NO. Tumour necrosis factor (TNF)-induced hypotension and mortality are preserved in apo-sGC mice, indicating that pathways other than sGC signalling mediate the cardiovascular collapse in shock. Apo-sGC mice allow for differentiation between sGC-dependent and -independent NO effects and between haem-dependent and -independent sGC effects. Apo-sGC mice represent a unique experimental platform to study the in vivo consequences of sGC oxidation and the therapeutic potential of sGC activators.


Nutrients | 2015

Citrulline Supplementation Improves Organ Perfusion and Arginine Availability under Conditions with Enhanced Arginase Activity

Karolina A. P. Wijnands; Dennis M. Meesters; Kevin W.Y. van Barneveld; Ruben G.J. Visschers; Jacob J. Briedé; Benjamin Vandendriessche; Hans M.H. van Eijk; Babs A.F.M. Bessems; Nadine van den Hoven; Christian J.H. von Wintersdorff; Peter Brouckaert; Nicole D. Bouvy; Wouter H. Lamers; Anje Cauwels; Martijn Poeze

Enhanced arginase-induced arginine consumption is believed to play a key role in the pathogenesis of sickle cell disease-induced end organ failure. Enhancement of arginine availability with l-arginine supplementation exhibited less consistent results; however, l-citrulline, the precursor of l-arginine, may be a promising alternative. In this study, we determined the effects of l-citrulline compared to l-arginine supplementation on arginine-nitric oxide (NO) metabolism, arginine availability and microcirculation in a murine model with acutely-enhanced arginase activity. The effects were measured in six groups of mice (n = 8 each) injected intraperitoneally with sterile saline or arginase (1000 IE/mouse) with or without being separately injected with l-citrulline or l-arginine 1 h prior to assessment of the microcirculation with side stream dark-field (SDF)-imaging or in vivo NO-production with electron spin resonance (ESR) spectroscopy. Arginase injection caused a decrease in plasma and tissue arginine concentrations. l-arginine and l-citrulline supplementation both enhanced plasma and tissue arginine concentrations in arginase-injected mice. However, only the citrulline supplementation increased NO production and improved microcirculatory flow in arginase-injected mice. In conclusion, the present study provides for the first time in vivo experimental evidence that l-citrulline, and not l-arginine supplementation, improves the end organ microcirculation during conditions with acute arginase-induced arginine deficiency by increasing the NO concentration in tissues.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Of mice, men, and inflammation

Anje Cauwels; Benjamin Vandendriessche; Peter Brouckaert

In PNAS, Seok et al. advocate against relying on mouse models to study human inflammatory diseases, because genomic responses in human and mouse leukocytes correlate poorly (1). We fully agree with the conclusion of the authors that it is incorrect to believe “that molecular results from current mouse models developed to mimic human diseases translate directly to human conditions” (1). Several mouse studies—although yielding solid and interesting results—have been the victim of overinterpretation; for example, by extrapolating successful pretreatment in mice to therapeutic treatment in men. However, this aspect does not render these results useless. In the field of inflammation, valuable human therapies have been derived from mouse studies (e.g., anti-TNF treatment for rheumatoid arthritis and inflammatory bowel disease). In the field of sepsis, failure of the phase III clinical trial inhibiting NO synthases, which had to be terminated because of excess mortality, was actually predicted in assorted murine shock models (2).


Critical Care Medicine | 2014

A multiscale entropy-based tool for scoring severity of systemic inflammation.

Benjamin Vandendriessche; Harlinde Peperstraete; Elke Rogge; Peter Cauwels; Eric Hoste; Oliver Stiedl; Peter Brouckaert; Anje Cauwels

Objective:Early detection and start of appropriate treatment are highly correlated with survival of sepsis and septic shock, but the currently available predictive tools are not sensitive enough to identify patients at risk. Design:Linear (time and frequency domain) and nonlinear (unifractal and multiscale complexity dynamics) measures of beat-to-beat interval variability were analyzed in two mouse models of inflammatory shock to determine if they are sensitive enough to predict outcome. Setting:University research laboratory. Subjects:Blood pressure transmitter-implanted female C57BL/6J mice. Interventions:IV administration of tumor necrosis factor (n = 11) or lipopolysaccharide (n = 14). Measurements and Main Results:Contrary to linear indices of variability, unifractal dynamics, and absolute heart rate or blood pressure, quantification of complex beat-to-beat dynamics using multiscale entropy was able to predict survival outcome starting as early as 40 minutes after induction of inflammatory shock. Based on these results, a new and clinically relevant index of multiscale entropy was developed that scores the key features of a multiscale entropy profile. Contrary to multiscale entropy, multiscale entropy scoring can be followed as a function of time to monitor disease progression with limited loss of information. Conclusions:Analysis of multiscale complexity of beat-to-beat dynamics at high temporal resolution has potential as a sensitive prognostic tool with translational power that can predict survival outcome in systemic inflammatory conditions such as sepsis and septic shock.


PLOS ONE | 2013

The Soluble Guanylate Cyclase Activator BAY 58-2667 Protects against Morbidity and Mortality in Endotoxic Shock by Recoupling Organ Systems

Benjamin Vandendriessche; Elke Rogge; Vera Goossens; Peter Vandenabeele; Johannes Peter Stasch; Peter Brouckaert; Anje Cauwels

Sepsis and septic shock are associated with high mortality rates and the majority of sepsis patients die due to complications of multiple organ failure (MOF). The cyclic GMP (cGMP) producing enzyme soluble guanylate cyclase (sGC) is crucially involved in the regulation of (micro)vascular homeostasis, cardiac function and, consequently, organ function. However, it can become inactivated when exposed to reactive oxygen species (ROS). The resulting heme-free sGC can be reactivated by the heme- and nitric oxide (NO)-independent sGC activator BAY 58-2667 (Cinaciguat). We report that late (+8 h) post-treatment with BAY 58-2667 in a mouse model can protect against lethal endotoxic shock. Protection was associated with reduced hypothermia, circulating IL-6 levels, cardiomyocyte apoptosis, and mortality. In contrast to BAY 58-2667, the sGC stimulator BAY 41-2272 and the phosphodiesterase 5 inhibitor Sildenafil did not have any beneficial effect on survival, emphasizing the importance of the selectivity of BAY 58-2667 for diseased vessels and tissues. Hemodynamic parameters (blood pressure and heart rate) were decreased, and linear and nonlinear indices of blood pressure variability, reflective for (un)coupling of the communication between the autonomic nervous system and the heart, were improved after late protective treatment with BAY 58-2667. In conclusion, our results demonstrate the pivotal role of the NO/sGC axis in endotoxic shock. Stabilization of sGC function with BAY 58-2667 can prevent mortality when given in the correct treatment window, which probably depends on the dynamics of the heme-free sGC pool, in turn influenced by oxidative stress. We speculate that, considering the central role of sGC signaling in many pathways required for maintenance of (micro)circulatory homeostasis, BAY 58-2667 supports organ function by recoupling inter-organ communication pathways.


Nitric Oxide | 2014

Nitric oxide production by endotoxin preparations in TLR4-deficient mice.

Anje Cauwels; Jennyfer Bultinck; Renske De Zwaef; Benjamin Vandendriessche; Stefan Magez; Peter Brouckaert

Sepsis and septic shock result from an exacerbated systemic inflammatory reaction to infection. Their incidence is rising, and they have recently become the main cause of death in intensive care units. Septic shock is defined as sepsis accompanied by life-threatening refractory hypotension, for which excessive nitric oxide (NO), produced by inducible NO synthase iNOS, is thought responsible. LPS, a vital outer membrane component of Gram-negative bacteria, mimics most of the septic effects and is widely used as a model for septic shock. TLR4 is the signal-transducing receptor for LPS, evidenced by the resistance of TLR4-deficient C3H/HeJ and C57BL/10ScNJ mice. As expected, we found that TLR4 deficiency precludes LPS-induced cytokine production, independent of the purity of the LPS preparation. However, various conventional LPS preparations induced NO in TLR4-deficient mice to the same level as in control animals, while ultrapure LPS did not, indicating the presence of NO-producing contaminant(s). Nevertheless, despite identical iNOS induction pattern and systemic NO levels, the contaminant does not cause hypotension, hypothermia, or any other sign of morbidity. Using mice deficient for TLR2, TRL3, TLR4, TRL2x4, TLR9, MyD88 or TRIF, we found that the contaminant signals via TLR2 and MyD88. In conclusion, conventional LPS preparations generally used in endotoxic shock research contain TLR2 agonists that induce iNOS and high levels of systemic NO as such, and synergize with LPS towards the production of pro-inflammatory cytokines, morbidity and mortality. Surprisingly, the excessive iNOS-derived systemic NO production induced by impure LPS in TLR4⁻/⁻ is not accompanied by hypotension or morbidity.


BMC Physiology | 2014

MAPK-activated protein kinase 2-deficiency causes hyperacute tumor necrosis factor-induced inflammatory shock

Benjamin Vandendriessche; An Goethals; Alba Simats; Evelien Van Hamme; Peter Brouckaert; Anje Cauwels

BackgroundMAPK-activated protein kinase 2 (MK2) plays a pivotal role in the cell response to (inflammatory) stress. Among others, MK2 is known to be involved in the regulation of cytokine mRNA metabolism and regulation of actin cytoskeleton dynamics. Previously, MK2-deficient mice were shown to be highly resistant to LPS/d-Galactosamine-induced hepatitis. Additionally, research in various disease models has indicated the kinase as an interesting inhibitory drug target for various acute or chronic inflammatory diseases.ResultsWe show that in striking contrast to the known resistance of MK2-deficient mice to a challenge with LPS/D-Gal, a low dose of tumor necrosis factor (TNF) causes hyperacute mortality via an oxidative stress driven mechanism. We identified in vivo defects in the stress fiber response in endothelial cells, which could have resulted in reduced resistance of the endothelial barrier to deal with exposure to oxidative stress. In addition, MK2-deficient mice were found to be more sensitive to cecal ligation and puncture-induced sepsis.ConclusionsThe capacity of the endothelial barrier to deal with inflammatory and oxidative stress is imperative to allow a regulated immune response and maintain endothelial barrier integrity. Our results indicate that, considering the central role of TNF in pro-inflammatory signaling, therapeutic strategies examining pharmacological inhibition of MK2 should take potentially dangerous side effects at the level of endothelial barrier integrity into account.


Cancer Research | 2018

Delivering Type I Interferon to Dendritic Cells Empowers Tumor Eradication and Immune Combination Treatments

Anje Cauwels; Sandra Van Lint; Franciane Paul; Geneviève Garcin; Stefaan De Koker; Alexander Van Parys; Thomas Wueest; Sarah Gerlo; José Van der Heyden; Yann Bordat; Dominiek Catteeuw; Elke Rogge; Annick Verhee; Bart Vandekerckhove; Niko Kley; Gilles Uzé; Jan Tavernier

An ideal generic cancer immunotherapy should mobilize the immune system to destroy tumor cells without harming healthy cells and remain active in case of recurrence. Furthermore, it should preferably not rely on tumor-specific surface markers, as these are only available in a limited set of malignancies. Despite approval for treatment of various cancers, clinical application of cytokines is still impeded by their multiple toxic side effects. Type I IFN has a long history in the treatment of cancer, but its multifaceted activity pattern and complex side effects prevent its clinical use. Here we develop AcTakines (Activity-on-Target cytokines), optimized (mutated) immunocytokines that are up to 1,000-fold more potent on target cells, allowing specific signaling in selected cell types only. Type I IFN-derived AcTaferon (AFN)-targeting Clec9A+ dendritic cells (DC) displayed strong antitumor activity in murine melanoma, breast carcinoma, and lymphoma models and against human lymphoma in humanized mice without any detectable toxic side effects. Combined with immune checkpoint blockade, chemotherapy, or low-dose TNF, complete tumor regression and long-lasting tumor immunity were observed, still without adverse effects. Our findings indicate that DC-targeted AFNs provide a novel class of highly efficient, safe, and broad-spectrum off-the-shelf cancer immunotherapeutics with no need for a tumor marker.Significance: Targeted type I interferon elicits powerful antitumor efficacy, similar to wild-type IFN, but without any toxic side effects. Cancer Res; 78(2); 463-74. ©2017 AACR.

Collaboration


Dive into the Anje Cauwels's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge