Anjum Ansari
University of Illinois at Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anjum Ansari.
Biophysical Chemistry | 1987
Anjum Ansari; Joel Berendzen; D. Braunstein; Benjamin R. Cowen; Hans Frauenfelder; Mi Kyung Hong; Icko Iben; J. Bruce Johnson; Pál Ormos; Todd B. Sauke; Reinhard Scholl; Alfons Schulte; Peter J. Steinbach; Joseph Vittitow; Robert D. Young
The infrared stretching bands of carboxymyoglobin (MbCO) and the rebinding of CO to Mb after photodissociation have been studied in the temperature range 10-300 K in a variety of solvents. Four stretching bands imply that MbCO can exist in four substates, A0-A3. The temperature dependences of the intensities of the four bands yield the relative binding enthalpies and and entropies. The integrated absorbances and pH dependences of the bands permit identification of the substates with the conformations observed in the X-ray data (Kuriyan et al., J. Mol. Biol. 192 (1986) 133). At low pH, A0 is hydrogen-bonded to His E7. The substates A0-A3 interconvert above about 180 K in a 75% glycerol/water solvent and above 270 K in buffered water. No major interconversion is seen at any temperature if MbCO is embedded in a solid polyvinyl alcohol matrix. The dependence of the transition on solvent characteristics is explained as a slaved glass transition. After photodissociation at low temperature the CO is in the heme pocket B. The resulting CO stretching bands which are identified as B substates are blue-shifted from those of the A substates. At 40 K, rebinding after flash photolysis has been studied in the Soret, the near-infrared, and the integrated A and B substates. All data lie on the same rebinding curve and demonstrate that rebinding is nonexponential in time from at least 100 ns to 100 ks. No evidence for discrete exponentials is found. Flash photolysis with monitoring in the infrared region shows four different pathways within the pocket B to the bound substates Ai. Rebinding in each of the four pathways B----A is nonexponential in time to at least 10 ks and the four pathways have different kinetics below 180 K. From the time and temperature dependence of the rebinding, activation enthalpy distributions g(HBA) and preexponentials ABA are extracted. No pumping from one A substate to another, or one B substate to another, is observed below the transition temperature of about 180 K. If MbCO is exposed to intense white light for 10-10(3) s before being fully photolyzed by a laser flash, the amplitude of the long-lived states increases. The effect is explained in terms of a hierarchy of substates and substate symmetry breaking. The characteristics of the CO stretching bands and of the rebinding processes in the heme pocket depend strongly on the external parameters of solvent, pH and pressure. This sensitivity suggests possible control mechanisms for protein reactions.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Anjum Ansari; Serguei V. Kuznetsov; Yiqing Shen
Elucidating the mechanism of folding of polynucleotides depends on accurate estimates of free energy surfaces and a quantitative description of the kinetics of structure formation. Here, the kinetics of hairpin formation in single-stranded DNA are measured after a laser temperature jump. The kinetics are modeled as configurational diffusion on a free energy surface obtained from a statistical mechanical description of equilibrium melting profiles. The effective diffusion coefficient is found to be strongly temperature-dependent in the nucleation step as a result of formation of misfolded loops that do not lead to subsequent zipping. This simple system exhibits many of the features predicted from theoretical studies of protein folding, including a funnel-like energy surface with many folding pathways, trapping in misfolded conformations, and non-Arrhenius folding rates.
Nucleic Acids Research | 2007
Serguei V. Kuznetsov; Cha Chi Ren; Sarah A. Woodson; Anjum Ansari
Hairpin loops are critical to the formation of nucleic acid secondary structure, and to their function. Previous studies revealed a steep dependence of single-stranded DNA (ssDNA) hairpin stability with length of the loop (L) as ∼L8.5 ± 0.5, in 100 mM NaCl, which was attributed to intraloop stacking interactions. In this article, the loop-size dependence of RNA hairpin stabilities and their folding/unfolding kinetics were monitored with laser temperature-jump spectroscopy. Our results suggest that similar mechanisms stabilize small ssDNA and RNA loops, and show that salt contributes significantly to the dependence of hairpin stability on loop size. In 2.5 mM MgCl2, the stabilities of both ssDNA and RNA hairpins scale as ∼L4 ± 0.5, indicating that the intraloop interactions are weaker in the presence of Mg2+. Interestingly, the folding times for ssDNA hairpins (in 100 mM NaCl) and RNA hairpins (in 2.5 mM MgCl2) are similar despite differences in the salt conditions and the stem sequence, and increase similarly with loop size, ∼L2.2 ± 0.5 and ∼L2.6 ± 0.5, respectively. These results suggest that hairpins with small loops may be specifically stabilized by interactions of the Na+ ions with the loops. The results also reinforce the idea that folding times are dominated by an entropic search for the correct nucleating conformation.
Biophysical Journal | 1990
Pál Ormos; Anjum Ansari; D. Braunstein; Benjamin R. Cowen; H. Frauenfelder; Mi Kyung Hong; Icko Iben; Todd B. Sauke; Peter J. Steinbach; Robert D. Young
The rebinding kinetics of CO to myoglobin after flash photolysis is nonexponential in time below approximately 180 K; the kinetics is governed by a distribution of enthalpic barriers. This distribution results from inhomogeneities in the protein conformation, referred to as conformational substates. Hole-burning experiments on the Soret and IR CO-stretch bands test the assumption that an inhomogeneous distribution of conformational substates results in inhomogeneously broadened spectra. CO was slowly photolyzed at different wavelengths in the Soret band at 10 K. Both the Soret band and the CO-stretch band A1, centered at 1,945 cm-1, shift during photolysis, demonstrating that different wavelengths excite different parts of the distributed population. We have also done kinetic hole-burning experiments by measuring peak shifts in the Soret and A1 bands as the CO molecules rebind. The shifts indicate that the spectral and enthalpic distributions are correlated. In the A1 band, the spectral and enthalpic distributions are highly correlated while in the Soret the correlation is weak. From the peak shifts in the spectral and kinetic hole-burning experiments the inhomogeneous broadening is estimated to be approximately 15% of the total width in the Soret band and approximately 60% in A1. We have previously measured the tilt angle alpha between the bound CO and the heme normal (Ormos, P., D. Braunstein, H. Frauenfelder, M. K. Hong, S.-L. Lin, T. B. Sauke, and R. D. Young. 1988. Proc. Natl. Acad. Sci. USA. 85:8492-8496) and observed a wave number dependence of the tilt angles within the CO-stretch A bands. Thus the spectral and enthalpic distributions of the A bands are coupled to a heterogeneity of the structure.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Serguei V. Kuznetsov; Sawako Sugimura; Paula Vivas; Donald M. Crothers; Anjum Ansari
Regulation of gene expression involves formation of specific protein–DNA complexes in which the DNA is often bent or sharply kinked. Kinetics measurements of DNA bending when in complex with the protein are essential for understanding the molecular mechanism that leads to precise recognition of specific DNA-binding sites. Previous kinetics measurements on several DNA-bending proteins used stopped-flow techniques that have limited time resolution of few milliseconds. Here we use a nanosecond laser temperature-jump apparatus to probe, with submillisecond time resolution, the kinetics of bending/unbending of a DNA substrate bound to integration host factor (IHF), an architectural protein from Escherichia coli. The kinetics are monitored with time-resolved FRET, with the DNA substrates end-labeled with a FRET pair. The temperature-jump measurements, in combination with stopped-flow measurements, demonstrate that the binding of IHF to its cognate DNA site involves an intermediate state with straight or, possibly, partially bent DNA. The DNA bending rates range from ≈2 ms−1 at ≈37°C to ≈40 ms−1 at ≈10°C and correspond to an activation energy of ≈14 ± 3 kcal/mol. These rates and activation energy are similar to those of a single A:T base pair opening inside duplex DNA. Thus, our results suggest that spontaneous thermal disruption in base-paring, nucleated at an A:T site, may be sufficient to overcome the free energy barrier needed to partially bend/kink DNA before forming a tight complex with IHF.
Biophysical Journal | 1993
Anjum Ansari; Attila Szabo
The theory of absorbance measurements on a system (e.g., chromophore(s) in a protein) that undergoes a sequence of reactions initiated by a linearly polarized light pulse is developed for excitation pulses of arbitrary intensity. This formalism is based on a set of master equations describing the time evolution of the orientational distribution function of the various species resulting from excitation, reorientational dynamics, and chemical kinetics. For intense but short excitation pulses, the changes in absorbance (for arbitrary polarization directions of the excitation and probe pulses) and the absorption anisotropy are expressed in terms of reorientational correlation functions. The influence of the internal motions of the chromophore as well as the overall motions of the molecules is considered. When the duration of the excitation pulse is long compared to the time-scale of internal motions but comparable to the overall correlation time of the molecule that is reorienting isotropically, the problem of calculating the changes in absorbance is reduced to the solution of a set of first-order coupled differential equations. Emphasis is placed on obtaining explicit results for quantities that are measured in photolysis and fluorescence experiments so as to facilitate the analysis of experimental data.
Nature Communications | 2015
Xuejing Chen; Yogambigai Velmurugu; Guanqun Zheng; Beomseok Park; Yoonjung Shim; Youngchang Kim; Lili Liu; Bennett Van Houten; Chuan He; Anjum Ansari; Jung Hyun Min
The xeroderma pigmentosum C (XPC) complex initiates nucleotide excision repair by recognizing DNA lesions before recruiting downstream factors. How XPC detects structurally diverse lesions embedded within normal DNA is unknown. Here we present a crystal structure that captures the yeast XPC orthologue (Rad4) on a single register of undamaged DNA. The structure shows that a disulphide-tethered Rad4 flips out normal nucleotides and adopts a conformation similar to that seen with damaged DNA. Contrary to many DNA repair enzymes that can directly reject non-target sites as structural misfits, our results suggest that Rad4/XPC uses a kinetic gating mechanism whereby lesion selectivity arises from the kinetic competition between DNA opening and the residence time of Rad4/XPC per site. This mechanism is further supported by measurements of Rad4-induced lesion-opening times using temperature-jump perturbation spectroscopy. Kinetic gating may be a general mechanism used by site-specific DNA-binding proteins to minimize time-consuming interrogations of non-target sites.
Biophysical Journal | 1993
Anjum Ansari; Colleen M. Jones; Eric R. Henry; James Hofrichter; William A. Eaton
Polarized photolysis experiments have been performed on the carbon monoxide complex of myoglobin to assess the effects of photoselection on the kinetics of ligand rebinding and to investigate the reorientational dynamics of the heme plane. The results are analyzed in terms of the optical theory developed in the preceding paper by Ansari and Szabo. Changes in optical density arising from rotational diffusion of the photoselected population produce large deviations from the true geminate ligand rebinding curves if measurements are made with only a single polarization. The apparent ligand rebinding curves are significantly distorted even at photolysis levels greater than 90%. These deviations are eliminated by obtaining isotropically-averaged optical densities from measurements using both parallel and perpendicular polarizations of the probe pulse. These experiments also yield the optical anisotropy, which gives a novel method for accurately determining the degree of photolysis, as well as important information on the reorientational dynamics of the heme plane. The correlation time for the overall rotational diffusion of the molecule is obtained from the decay of the anisotropy. The anisotropy prior to rotational diffusion is lower than that predicted for a rigidly attached, perfectly circular absorber, corresponding to an apparent order parameter of S = 0.95 +/- 0.02. Polarized absorption data on single crystals suggest that the decreased anisotropy results more from internal motions of the heme plane which take place on time scales shorter than the duration of the laser pulse (10 ns) than from out-of-plane polarized transitions.
Journal of Physical Chemistry B | 2008
Paula Vivas; Serguei V. Kuznetsov; Anjum Ansari
To elucidate the nature of the transition-state ensemble along the reaction pathway from a nonspecific protein-DNA complex to the specific complex, we have carried out measurements of DNA bending/unbending dynamics on a cognate DNA substrate in complex with integration host factor (IHF), an architectural protein from E. coli that bends its cognate site by approximately 180 degrees . We use a laser temperature jump to perturb the IHF-DNA complex and monitor the relaxation kinetics with time-resolved FRET measurements on DNA substrates end-labeled with a FRET pair. Previously, we showed that spontaneous bending/kinking of DNA, from thermal disruption of base-pairing/-stacking interactions, may be the rate-limiting step in the formation of the specific complex (Kuznetsov, S. V.; Sugimura, S.; Vivas, P.; Crothers, D. M.; Ansari, A. Proc. Natl. Acad. Sci. USA 2006, 103, 18515). Here, we probe the effect of varying [KCl], which affects the stability of the complex, on this rate-limiting step. We find that below approximately 250 mM KCl, the observed relaxation kinetics are from the unimolecular bending/unbending of DNA, and the relaxation rate kr is independent of [KCl]. Above approximately 300 mM KCl, dissociation of the IHF-DNA complex becomes significant, and the observed relaxation process includes contributions from the association/dissociation step, with kr decreasing with increasing [KCl]. The DNA bending step occurs with a positive activation enthalpy, despite the large negative enthalpy change reported for the specific IHF-DNA complex (Holbrook, J. A.; Tsodikov, O. V.; Saecker, R. M.; Record, M. T., Jr. J. Mol. Biol. 2001, 310, 379). Our conclusion from these studies is that in the uphill climb to the transition state, the DNA is kinked, but with no release of ions, as indicated by the salt-independent behavior of k(r) at low [KCl]. Any release of ions in the unimolecular process, together with conformational changes in the protein-DNA complex that facilitate favorable interactions and that contribute to the negative enthalpy change, must occur as the system leaves the transition state, downhill to the final complex.
Journal of Chemical Physics | 2000
Anjum Ansari
A robust numerical approach to solving the Smoluchowski equation describing a diffusive process is presented for the case where standard procedures are not so useful, in particular, diffusion along a spatially rough potential. The approach developed here makes use of an analytical expression for the mean first passage time for a system to get from one point to another along an arbitrary rough potential, and reduces the solution of the Smoluchowski equation to the solution of a relatively small number of first-order coupled differential equations. The results of this approach are compared with a discrete approximation solution of the Smoluchowski equation as well as with the analytical solution for the special case of a smooth harmonic potential. A significant reduction of computational time is achieved over the discrete approximation method. A model of configurational diffusion along a one-dimensional harmonic potential with coordinate-dependent diffusion coefficient is used to fit the highly nonexponential relaxation dynamics observed in myoglobin following the photodissociation of the bound carbon-monoxide. The relaxation is well described with an effective diffusion coefficient that decreases exponentially along the reaction coordinate. This decrease can arise from either an increase in the roughness of the potential surface or an increase in the friction along the reaction coordinate as the system approaches equilibrium.