Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anjum Gahlaut is active.

Publication


Featured researches published by Anjum Gahlaut.


Biochemistry Research International | 2013

Acetylcholinesterase Biosensors for Electrochemical Detection of Organophosphorus Compounds: A Review

Vikas Dhull; Anjum Gahlaut; Neeraj Dilbaghi; Vikas Hooda

The exponentially growing population, with limited resources, has exerted an intense pressure on the agriculture sector. In order to achieve high productivity the use of pesticide has increased up to many folds. These pesticides contain organophosphorus (OP) toxic compounds which interfere with the proper functioning of enzyme acetylcholinesterase (AChE) and finally affect the central nervous system (CNS). So, there is a need for routine, continuous, on spot detection of OP compounds which are the main limitations associated with conventional analytical methods. AChE based enzymatic biosensors have been reported by researchers as the most promising tool for analysis of pesticide level to control toxicity and for environment conservation. The present review summarises AChE based biosensors by discussing their characteristic features in terms of fabrication, detection limit, linearity range, time of incubation, and storage stability. Use of nanoparticles in recently reported fabrication strategies has improved the efficiency of biosensors to a great extent making them more reliable and robust.


Journal of Pharmaceutical Analysis | 2013

Quantitative analysis of catechins in Saraca asoca and correlation with antimicrobial activity

Amey Shirolkar; Anjum Gahlaut; Anil Kumar Chhillar; Rajesh Dabur

Herbal medicines are highly complex and have unknown mechanisms in diseases treatment. Saraca asoca (Roxb.), De. Wild has been recommended to treat gynecological disorders and used in several commercial polyherbal formulations. In present study, efforts have been made to explore antimicrobial activity and its co-relation with the distributions of catechins in the organs of S. asoca using targeted MS/MS. Eight extracts (cold and hot water) from four different organs of S. asoca and two drugs were prepared and antimicrobial activity was assessed by microbroth dilution assay. Quantitative and qualitative analysis of catechins in crude extracts was done by using targeted and auto-MS/MS and correlated with antimicrobial activity. (+)-Catechin and (+)-epicatechin and their biosynthesis related compound were found to be up-regulated in regenerated bark and leaves extracts. (−)-Epigallocatechin was found to be significantly higher in bark water extract as compared to others but showed low antimicrobial activity. Result showed down-regulation of (−)-epigallocatechin and up-regulation of (+)-catechin and (+)-epicatechin in the regenerated bark and leaves of S. asoca. It might be the contributing factor in the antimicrobial activity of regenerated bark and leaves of the plant. The concentration of (+)-epicatechin in processed drugs (Ashokarishta) from Baidyanath was found to be seven times higher than that of Dabur Pvt. Ltd., but no antimicrobial activity was observed, indicating the variations among the plant based drugs. This will be helpful in rational use of S. asoca parts. Furthermore, the analytical method developed is sensitive, repeatable and reliable; therefore, it is suitable for quality control of herbal drugs.


International Scholarly Research Notices | 2013

Nontargeted Identification of the Phenolic and Other Compounds of Saraca asoca by High Performance Liquid Chromatography-Positive Electrospray Ionization and Quadrupole Time-of-Flight Mass Spectrometry

Ashwani Mittal; Preeti Kadyan; Anjum Gahlaut; Rajesh Dabur

High performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometer was used for separation and identification of phenolic and other compounds in the water extracts of Saraca asoca (Roxb.), De. Wilde. The aim of the study was to identify and evaluate the distribution of phenolic compounds in the different parts of the plant. The identity of compounds was established through the comparison with standards and characteristic base peaks as well as other daughter ions. In crude extracts, 34 catechin derivatives, 34 flavonoids, and 17 other compounds were identified. Interestingly, further analysis of compounds showed plant part specific unique pattern of metabolites; that is, regenerated bark is observed to be the best source for catechin/catechin derivative while flowers were found to be the source for wide variety of flavonoids. Moreover, these plant part specific compounds can be used as biomarkers for the identification of plant material or herbal drugs. Overall, the present study provides for the first time a comprehensive analysis of the phenolic components of this herb which may be helpful not only to understand their usage but also to contribute to quality control as well.


Journal of advanced pharmaceutical technology & research | 2013

β-sitosterol in different parts of Saraca asoca and herbal drug ashokarista: Quali-quantitative analysis by liquid chromatography-mass spectrometry.

Anjum Gahlaut; Amey Shirolkar; Vikas Hooda; Rajesh Dabur

β-sitosterol is an important component in food and herbal products and beneficial in hyperlipidemia. Its higher concentrations in serum may lead to coronary artery disease in case of sitosterolemia. Therefore, it is essential to determine the quantity of β-sitosterol in food and herbal drugs. Saraca asoca and its preparations have been widely used by traditional healers are also a source of β-sitosterol. In the present study, quantitative estimation of β-sitosterol present in hot and cold water extracts of bark, regenerated bark, leaves and flowers of the S. asoca and Ashokarista drugs were carried out first time using high performance liquid chromatography coupled (HPLC) with quadrupole time-of-flight mass spectrometry. Different concentrations of β-sitosterol and crude extracts were estimated by HPLC and targeted mass spectrometry. Standard curve for β-sitosterol was prepared from the intensities of transitions (397.50 → 147.0987 m/z) having regression coefficient (r2) 0.9952. Out of eight extracts and two drugs used in the study bark water, leaves water and leaves hot water extracts were found to have a considerable quantity of β-sitosterol, i.e. 170, 123.5 and 19.3 ng/mL, respectively. The results showed significant differences in the distribution of β-sitosterol among different organs of S. asoca and drugs prepared from its bark. HPLC/electrospray ionizationmass spectroscopy method is accurate, reproducible and requires less specimen, sample preparation and analysis time over HPLC assay. This type of approaches could be helpful for the quality control of herbal medicines and provides necessary information for the rational utilization of plant resources.


Indian Journal of Pharmaceutical Sciences | 2013

Antifungal Treatments Delineate a Correlation between Cathepsins and Cytokines in Murine Model of Invasive Aspergillosis

Ashwani Mittal; Anjum Gahlaut; G.L. Sharma; Rajesh Dabur

In the pathogenesis of invasive pulmonary aspergillosis both fungal and host factors play roles. Though cytokines and phagocyte, as host factors, have been shown to participate in defence against Aspergillus species yet the role of cysteine proteases, that is cathepsins, a lysosomal enzymes of phagocytes, remains unknown in fungal infection. Studies are available which shows that cytokines regulate the cysteine proteases processed immune molecules for their further action but their relationship with each other under fungal infection is not clear. Therefore, in this study, we demonstrate the substantial role of cathepsins and cytokines in aspergillosis. In the present murine model of invasive pulmonary aspergillosis, on seventh day of Aspergillus fumigatus infection, both kidney and liver showed significant (P<0.05) fungal burdens, which was also confirmed by histological analyses. The activity profiles of four cathepsins in the kidney and liver tissue were analysed and correlated with blood cytokines level in the presence and absence of antifungal compounds (amphotericin B, a standard drug and 2-(3,4-dimethyl-2,5-dihydro-1H-pyrrole-2-yl)-1-methylethyl pentanoate, isolated in our laboratory from natural source) treatment. The data illustrate that the reduction in fungal load in both organs probably results in a decreased local inflammatory response, as measured by decreased levels of interleukin-4 and interleukin-10 and increased level of interferon gamma in the antifungal compounds treated mice. Interestingly, this altered level of cytokines relates well with the activity level of cathepsins, that is decreased in interleukines (interleukinL-4/interleukin-10) and cathepsins (cathepsin B, cathepsin C and cathepsin L); and increase in interferon gamma and cathepsin H levels in the mice treated with antifungal compounds were observed. These observations support not only the negative (cathepsin B, cathepsin C and cathepsin L) and positive (cathepsin H) role of cathepsins in aspergillosis but also prove the role of cytokines in remodelling of immune response. Overall, the study reveals a correlation between cathepsins and cytokines and their regulatory role in fungal mediated infection.


Artificial Cells Nanomedicine and Biotechnology | 2018

Alcohol quantification: recent insights into amperometric enzyme biosensors

Vinita Hooda; Vikas Kumar; Anjum Gahlaut; Vikas Hooda

Abstract Biosensors are the switching channels that make sense. The biosensors have found an empirical role in health applications (e.g. clinical diagnostics) as they represent the technological counterpart of living senses. On a global scale, alcohol analysis is indispensable for criminal justice systems, monitoring medical conditions of HIV patients & pregnant women as well as public safety issues regarding pilots, metro drivers, doctors etc. For addressing the clinical and toxicological problems, much advancement in the improvement of biosensors have been witnessed in recent decades. Currently, electrochemical biosensors dominate the field which harnesses the synergistic action of enzymes and nanomaterials for the analysis of ethanol. The enzymatic biosensors are the most explored biosensing devices among all the types of biosensors, and employment of nanomaterials has paved a way to the further improvements in this gem of a discovery. The relative comparison to precise the alcohol biosensors has been aptly discussed in the review on the basis of several analytical properties including fabrication, linearity, sensitivity, response time, detection limit as well as storage stability. Finally, the recent trends and emerging future prospects of alcohol biosensors have been reviewed.


Biotechnology Letters | 2017

Bilirubin enzyme biosensor: potentiality and recent advances towards clinical bioanalysis

Vinita Hooda; Anjum Gahlaut; Ashish Gothwal; Vikas Hooda

Bilirubin detection plays a major role in healthcare. Its high concentration in human serum is lethal and must be determined accurately. Clinically, it is vital for assessing patients with deleterious health conditions such as jaundice or icterus, hepatitis, mental disorders, cerebral palsy and brain damage especially in the case of neonates. In evaluating the drawbacks regarding the conventional methodology of bilirubin detection, there is need for a superior analytical tool. Bilirubin oxidase (BOx)-based sensors have been designed for the ultrasensitive analysis of bilirubin and quality deliverance of treatment and this review highlights the different mechanisms of bilirubin detection using different modified electrodes. Further, it also addresses the exploitation of highly attractive electrocatalytic properties of elite nanoparticles such as gold and zirconia- coated silica nanoparticles in enhancing the reproducibility and specificity of bilirubin biosensors.


Preparative Biochemistry & Biotechnology | 2018

A novel amperometric bienzymatic biosensor based on alcohol oxidase coupled PVC reaction cell and nanomaterials modified working electrode for rapid quantification of alcohol

Vinita Hooda; Vikas Kumar; Anjum Gahlaut; Vikas Hooda

Abstract A new amperometric sensor has been fabricated for sensitive and rapid quantification of ethanol. The biosensor assembly was prepared by covalently immobilizing alcohol oxidase (AOX) from Pichia pastoris onto chemically modified surface of polyvinylchloride (PVC) beaker with glutaraldehyde as a coupling agent followed by immobilization of horseradish peroxidase (HRP), silver nanoparticles (AgNPs), chitosan (CHIT), carboxylated multi-walled carbon nanotubes (c-MWCNTs) and nafion (Nf) nanocomposite onto the surface of Au electrode (working electrode). Owing to properties such as chemical inertness, light weight, weather resistance, corrosion resistance, toughness and cost-effectiveness, PVC membrane has attracted a growing interest as a support for enzyme immobilization in the development of biosensors. The amperometric biosensor displayed optimum response within 8 s at pH 7.5 and 35°C temperature. A linear response to alcohol in the range of 0.01mM–50 mM and 0.0001 µM as a minimum limit of detection was displayed by the proposed biosensor with excellent storage stability (190 days) at 4°C. The sensitivity of the sensor was found to be 155 µA mM−1 cm−2. A good correlation (R2 = 0.99) was found between alcohol level in commercial samples as evaluated by standard ethanol assay kit and the current biosensor which validates its performance.


Critical Reviews in Analytical Chemistry | 2018

Enzyme-Based Ultrasensitive Electrochemical Biosensors for Rapid Assessment of Nitrite Toxicity: Recent Advances and Perspectives

Anjum Gahlaut; Vinita Hooda; Ashish Gothwal; Vikas Hooda

ABSTRACT In the present era of rapid international globalization and industrialization, intensive use of nitrite as a fertilizing agent in agriculture, preservative, dyeing agent, food additive and as corrosion inhibitor in industrial sectors is adversely effecting environment, natural habitats and human health. The issue of toxicity and carcinogenicity due to excessive ingestion of nitrites via the dietary intake has led to an imminent need for its efficient real-time monitoring in situ. Nitrite detection employing electrochemical biosensors has been gaining high credibility in the field of clinical research. Nitrite biosensors have emerged as an outstanding choice for portable point of care testing of nitrite quantification owing to the excellent properties, such as rapidity, miniaturization, ultra-low limits of detection, multiplexing and enhanced detection sensitivity. The article is enclosed with an interesting outlook on latest emerging trends in the development of nitrite biosensors utilizing nanomaterials, such as metal nanoparticles, carbon nanotubes, metal oxide nanoparticles, nanocomposites, polymers and biomaterials. The present review embarks on the highlights relevant to the nitrite quantification in real samples, then proceeds with a meticulous description of the most pertinent electrochemical nitrite biosensors, which have been proposed by adopting diverse materials and strategies of fabrication and finally end with the achievements and future outlook signifying the application of these nanoengineered biosensors for environmental surveillance and human safety.


Artificial Cells Nanomedicine and Biotechnology | 2018

Recent approaches to ameliorate selectivity and sensitivity of enzyme based cholesterol biosensors: a review

Anjum Gahlaut; Vinita Hooda; Vikas Dhull; Vikas Hooda

Abstract The healthcare area is often reluctant to execute new technology unless they are proven to be safe, constructive and secure. Eventually, an aspiration stands for providing point-of-care testing service to allow a better estimation of the biochemical levels of a patient that entails an insistent remedial action. With increasing mortality rate due to cardiovascular diseases (CVDs) in present scenario, it has become the need of hour to develop more advance methods for their diagnosis, so that it can be determined at sensitive levels and can be prevented from being fatal. Elevated level of cholesterol in blood stream is one of the utmost risk factors which lead to CVDs. Discernible from the vast research in this field, worth of cholesterol biosensors is already recognized and flourished in the clinical analysis of brain and cardiac vascular diseases. It necessitates unremitting progress in the development of biosensing technology towards fabrication, miniaturization and multiplexing ability of cholesterol quantification devices so that they can endow with lab-on-chip-analysis systems to the medical field. Different strategies have been meticulously explored for the engineering of cholesterol biosensors utilizing nanocomposites, conducting polymers, nanotubes and nanoparticles. Foremost, this article reviews the contemporary evolution in cholesterol biosensors, which encompass various strategies for immobilization of enzymes and roles of various matrices and artificial mediators used for the biosensor fabrication. Still there remains an enormous challenge to congregate the demands of performance and yield in a cost effective manner for its application in successful treatments of CVDs.

Collaboration


Dive into the Anjum Gahlaut's collaboration.

Top Co-Authors

Avatar

Vikas Hooda

Maharshi Dayanand University

View shared research outputs
Top Co-Authors

Avatar

Rajesh Dabur

Maharshi Dayanand University

View shared research outputs
Top Co-Authors

Avatar

Ashish Gothwal

Maharshi Dayanand University

View shared research outputs
Top Co-Authors

Avatar

Vinita Hooda

Maharshi Dayanand University

View shared research outputs
Top Co-Authors

Avatar

Anil Kumar Chhillar

Maharshi Dayanand University

View shared research outputs
Top Co-Authors

Avatar

Vikas Dhull

Maharshi Dayanand University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mahesh Kulharia

Maharshi Dayanand University

View shared research outputs
Top Co-Authors

Avatar

Monika Dahiya

Maharshi Dayanand University

View shared research outputs
Top Co-Authors

Avatar

Vikas Kumar

Maharshi Dayanand University

View shared research outputs
Researchain Logo
Decentralizing Knowledge