Anke C. Schiedel
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anke C. Schiedel.
Journal of Medicinal Chemistry | 2009
Thomas Borrmann; Aliaa Abdelrahman; Rosaria Volpini; Catia Lambertucci; Edgars Alksnis; Simone Gorzalka; Melanie Knospe; Anke C. Schiedel; Gloria Cristalli; Christa E. Müller
Adenine derivatives bearing substituents in the 2-, N(6)-, 7-, 8-, and/or 9-position and a series of deazapurines were synthesized and investigated in [(3)H]adenine binding studies at the adenine receptor in rat brain cortical membrane preparations (rAde1R). Steep structure-activity relationships were observed. Substitution in the 8-position (amino, dimethylamino, piperidinyl, piperazinyl) or in the 9-position (2-morpholinoethyl) with basic residues or introduction of polar substituents at the 6-amino function (hydroxy, amino, acetyl) represented the best modifications. Functional evaluation of selected adenine derivatives in adenylate cyclase assays at 1321N1 astrocytoma cells stably expressing the rAde1R showed that all compounds investigated were agonists or partial agonists. A subset of compounds was additionally investigated in binding studies at human embryonic kidney (HEK293) cells, which also express a high-affinity adenine binding site. Structure-affinity relationships at the human cell line were similar to those at the rAde1R, but not identical. In particular, N(6)-acetyladenine (25, K(i) rat: 2.85 microM; K(i) human: 0.515 microM) and 8-aminoadenine (33, K(i) rat: 6.51 microM; K(i) human: 0.0341 microM) were much more potent at the human as compared to the rat binding site. The new AdeR ligands may serve as lead structures and contribute to the elucidation of the functions of the adenine receptor family.
Purinergic Signalling | 2015
Mohamad Wessam Alnouri; Stephan Jepards; Alessandro Casari; Anke C. Schiedel; Sonja Hinz; Christa E. Müller
Adenosine receptors (ARs) have emerged as new drug targets. The majority of data on affinity/potency and selectivity of AR ligands described in the literature has been obtained for the human species. However, preclinical studies are mostly performed in mouse or rat, and standard AR agonists and antagonists are frequently used for studies in rodents without knowing their selectivity in the investigated species. In the present study, we selected a set of frequently used standard AR ligands, 8 agonists and 16 antagonists, and investigated them in radioligand binding studies at all four AR subtypes, A1, A2A, A2B, and A3, of three species, human, rat, and mouse. Recommended, selective agonists include CCPA (for A1AR of rat and mouse), CGS-21680 (for A2A AR of rat), and Cl-IB-MECA (for A3AR of all three species). The functionally selective partial A2B agonist BAY60-6583 was found to additionally bind to A1 and A3AR and act as an antagonist at both receptor subtypes. The antagonists PSB-36 (A1), preladenant (A2A), and PSB-603 (A2B) displayed high selectivity in all three investigated species. MRS-1523 acts as a selective A3AR antagonist in human and rat, but is only moderately selective in mouse. The comprehensive data presented herein provide a solid basis for selecting suitable AR ligands for biological studies.
Molecular Pharmacology | 2007
Ivar von Kügelgen; Anke C. Schiedel; Kristina Hoffmann; Bernt B. A. Alsdorf; Aliaa Abdelrahman; Christa E. Müller
An orphan G protein-coupled receptor from the rat has recently been demonstrated to act as a transmembrane receptor for the nucleobase adenine. The receptor is possibly involved in nociception. Here we report the cloning and functional expression of an additional Gi-coupled receptor for adenine (Genbank accession code DQ386867). mRNA for this receptor was obtained from mouse brain and the mouse neuroblastoma x rat glioma hybrid cell line NG108-15. The new mouse protein sequence shares only 76% identity with that of the rat adenine receptor, suggesting that the receptors are not species homologs but distinct receptor subtypes. In human 1321N1 astrocytoma cells stably expressing the new mouse receptor, adenine and 2-fluoroadenine inhibited the isoproterenol-induced cAMP formation with IC50 concentrations of 8 and 15 nM, respectively. The adenosine receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 1 μM) as well as the P2 receptor antagonist suramin (300 μM) failed to change the responses to adenine. In contrast, pretreatment of cells with pertussis toxin abolished the effect of adenine. When the novel adenine receptor was expressed in Sf21 insect cells, a specific binding site for [3H]adenine was detected. In competition assays, the rank order of potency of selected ligands was identical to that obtained in membranes from NG108-15 cells and rat brain cortex (adenine > 2-fluoroadenine > 7-methyladenine > 1-methyladenine ≫ N6-dimethyladenine). In summary, our data show that a second mammalian DNA sequence encodes for a Gi-coupled GPCR activated by low, nanomolar concentrations of adenine.
Journal of Computer-aided Molecular Design | 2009
Farag F. Sherbiny; Anke C. Schiedel; Astrid Maaß; Christa E. Müller
A three-dimensional model of the human adenosine A2B receptor was generated by means of homology modelling, using the crystal structures of bovine rhodopsin, the β2-adrenergic receptor, and the human adenosine A2A receptor as templates. In order to compare the three resulting models, the binding modes of the adenosine A2B receptor antagonists theophylline, ZM241385, MRS1706, and PSB601 were investigated. The A2A-based model was much better able to stabilize the ligands in the binding site than the other models reflecting the high degree of similarity between A2A and A2B receptors: while the A2B receptor shares about 21% of the residues with rhodopsin, and 31% with the β2-adrenergic receptor, it is 56% identical to the adenosine A2A receptor. The A2A-based model was used for further studies. The model included the transmembrane domains, the extracellular and the intracellular hydrophilic loops as well as the terminal domains. In order to validate the usefulness of this model, a docking analysis of several selective and nonselective agonists and antagonists was carried out including a study of binding affinities and selectivities of these ligands with respect to the adenosine A2A and A2B receptors. A common binding site is proposed for antagonists and agonists based on homology modelling combined with site-directed mutagenesis and a comparison between experimental and calculated affinity data. The new, validated A2B receptor model may serve as a basis for developing more potent and selective drugs.
Biochemical Pharmacology | 2011
Anke C. Schiedel; Sonja Hinz; Dominik Thimm; Farag F. Sherbiny; Thomas Borrmann; Astrid Maaß; Christa E. Müller
The adenosine A(2B) receptor is of considerable interest as a new drug target for the treatment of asthma, inflammatory diseases, pain, and cancer. In the present study we investigated the role of the cysteine residues in the extracellular loop 2 (ECL2) of the receptor, which is particularly cysteine-rich, by a combination of mutagenesis, molecular modeling, chemical and pharmacological experiments. Pretreatment of CHO cells recombinantly expressing the human A(2B) receptor with dithiothreitol led to a 74-fold increase in the EC(50) value of the agonist NECA in cyclic AMP accumulation. In the C78(3.25)S and the C171(45.50)S mutant high-affinity binding of the A(2B) antagonist radioligand [(3)H]PSB-603 was abolished and agonists were virtually inactive in cAMP assays. This indicates that the C3.25-C45.50 disulfide bond, which is highly conserved in GPCRs, is also important for binding and function of A(2B) receptors. In contrast, the C166(45.45)S and the C167(45.46)S mutant as well as the C166(45.45)S-C167(45.46)S double mutant behaved like the wild-type receptor, while in the C154(45.33)S mutant significant, although more subtle effects on cAMP accumulation were observed - decrease (BAY60-6583) or increase (NECA) - depending on the structure of the investigated agonist. In contrast to the X-ray structure of the closely related A(2A) receptor, which showed four disulfide bonds, the present data indicate that in the A(2B) receptor only the C3.25-C45.50 disulfide bond is essential for ligand binding and receptor activation. Thus, the cysteine residues in the ECL2 of the A(2B) receptor not involved in stabilization of the receptor structure may have other functions.
Biochemical Pharmacology | 2013
Benjamin F. Seibt; Anke C. Schiedel; Dominik Thimm; Sonja Hinz; Farag F. Sherbiny; Christa E. Müller
The second extracellular loop (EL2) of G protein-coupled receptors (GPCRs), which represent important drug targets, may be involved in ligand recognition and receptor activation. We studied the closely related adenosine receptor (AR) subtypes A2A and A2B by exchanging the complete EL2 of the human A2BAR for the EL2 of the A2AAR. Furthermore, single amino acid residues (Asp148(45.27), Ser149(45.28), Thr151(45.30), Glu164(45.43), Ser165(45.44), and Val169(45.48)) in the EL2 of the A2BAR were exchanged for alanine. The single mutations did not lead to any major effects, except for the T151A mutant, at which NECA showed considerably increased efficacy. The loop exchange entailed significant effects: The A2A-selective agonist CGS21680, while being completely inactive at A2BARs, showed high affinity for the mutant A2B(EL2-A2A)AR, and was able to fully activate the receptor. Most strikingly, all agonists investigated (adenosine, NECA, BAY60-6583, CGS21680) showed strongly increased efficacies at the mutant A2B(EL2-A2A) as compared to the wt AR. Thus, the EL2 of the A2BAR appears to have multiple functions: besides its involvement in ligand binding and subtype selectivity it modulates agonist-bound receptor conformations thereby controlling signalling efficacy. This role of the EL2 is likely to extend to other members of the GPCR family, and the EL2 of GPCRs appears to be an attractive target structure for drugs.
European Journal of Medicinal Chemistry | 2011
Anna Drabczyńska; Olga Yuzlenko; Meryem Köse; Minka Paskaleva; Anke C. Schiedel; Janina Karolak-Wojciechowska; Jadwiga Handzlik; Tadeusz Karcz; Kamil Kuder; Christa E. Müller; Katarzyna Kieć-Kononowicz
Syntheses and physicochemical properties of N-cycloalkyl-substituted imidazo-, pyrimido- and 1,3-diazepino[2,1-f]purinediones are described. These derivatives were synthesized by cyclization of 7-halogenoalkyl-8-bromo-1,3-dimethylxanthine derivatives with aminocycloalkanes. The obtained compounds (1-33) were evaluated for their affinity to rat adenosine A(1) and A(2A) receptors. Selected compounds were additionally investigated for affinity to the human A(1), A(2A), A(2B) and A(3) receptor subtypes. The results of the radioligand binding assays at adenosine A(1) and A(2A) receptors showed that most of the compounds exhibited adenosine A(2A) receptor affinity at micromolar or submicromolar concentrations; an annelated pyrimidine ring was beneficial for A(2A) affinity. The most potent A(2A) ligands of the present series were compounds 6 (K(i) 0.33 μM rat A(2A), 0.31 μM human A(2A)), 8 (K(i) 0.98 μM rat A(2A), 0.42 μM human A(2A)) and 15 (K(i) 0.24 μM rat A(2A), 0.61 μM human A(2A)) with the latter one showing high A(2A) selectivity. In NaCl shift assay, 15 was shown to be an antagonist at A(2A) receptors. This result was confirmed for the best compounds 6, 8, 15 in cAMP accumulation studies. A 3D-QSAR equation with a good predicting power (q(2) = 0.88) for A(2A) AR affinity was obtained. The compounds were evaluated in vivo as anticonvulsants in MES and ScMet tests and examined for neurotoxicity in mice (i.p.). Most of them showed anticonvulsant activity in chemically induced seizures; among them the diazepinopurinediones were the best (e.g. 31) showing protection in both tests on short time symptoms, without signs of neurotoxicity. Five compounds, 8, 17, 20, 29, and 31, exhibited anticonvulsant activity after peroral application in rats. Structure-activity relationships are discussed including the analysis of lipophilic and spatial properties. The new compounds, which contain a basic nitrogen atom and can therefore be protonated, may be good starting points for obtaining A(2A) antagonists with good water-solubility.
Journal of Medicinal Chemistry | 2013
Mario Funke; Dominik Thimm; Anke C. Schiedel; Christa E. Müller
8-Amido-chromen-4-one-2-carboxylic acid derivatives were identified as novel agonists at the G protein-coupled orphan receptor GPR35. They were characterized by a β-arrestin recruitment assay and optimized to obtain agonists with nanomolar potency for the human GPR35. The compounds were found to exhibit high selectivity versus the related GPR55. The most potent agonists were 6-bromo-8-(4-methoxybenzamido)-4-oxo-4H-chromene-2-carboxylic acid (85, EC50 12.1 nM) and 6-bromo-8-(2-chloro-4-methoxybenzamido)-4-oxo-4H-chromene-2-carboxylic acid (90, EC50 11.1 nM), both of which were >1700-fold selective versus GPR55. Most compounds were considerably less potent at rat and mouse than at human GPR35. 6-Bromo-8-(2-methoxybenzamido)-4-oxo-4H-chromene-2-carboxylic acid (87) was the only derivative that activated GPR35 of all three species at similar, low micromolar concentration. Compounds 85 and 90 are the most potent agonists at the human GPR35 known to date and might thus serve as powerful pharmacological tools to further elucidate the receptors (patho)physiological role and its potential as a future drug target.
Future Medicinal Chemistry | 2009
Meryem Köse; Anke C. Schiedel
BACKGROUND Nucleoside/nucleobase transporters have been investigated since the 1960s. In particular, equilibrative nucleoside transporters were thought to be valuable drug targets, since they are involved in various kinds of viral and parasitic diseases as well as cancers. DISCUSSION In the postgenomic era multiple transporters, including different subtypes, have been cloned and characterized on the molecular level. In this article we summarize recent advances regarding structure, function and localization of nucleoside/nucleobase transporters as well as the pharmacological profile of selected drugs. CONCLUSION Knowledge of the different kinetic properties and structural features of nucleoside transporters can either be used for the rational design of therapeutics directly targeting the transporter itself or for the delivery of drugs using the transporter as a port of entry into the target cell. Equilibrative nucleoside transporters are of considerable pharmacological interest as drug targets for the development of drugs tailored to each patients need for the treatment of cardiac disease, cancer and viral infections.
Acta Physiologica | 2015
Dominik Thimm; Anke C. Schiedel; Janos Peti-Peterdi; Bellamkonda K. Kishore; Christa E. Müller
In 2002, the first receptor activated by the nucleobase adenine was discovered in rats. In the past years, two adenine receptors (AdeRs) in mice and one in Chinese hamsters, all of which belong to the family of G protein‐coupled receptors (GPCRs), were cloned and pharmacologically characterized. Based on the nomenclature for other purinergic receptor families (P1 for adenosine receptors and P2 for nucleotide, e.g. ATP, receptors), AdeRs were designated P0 receptors. Pharmacological data indicate the existence of G protein‐coupled AdeRs in pigs and humans as well; however, those have not been cloned so far. Current data suggest a role for adenine and AdeRs in renal proximal tubules. Furthermore, AdeRs are suggested to be functional counterplayers of vasopressin in the collecting duct system, thus exerting diuretic effects. We are only at the beginning of understanding the significance of this new class of purinergic receptors, which might become future drug targets.