Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anke Di is active.

Publication


Featured researches published by Anke Di.


Nature Cell Biology | 2006

CFTR regulates phagosome acidification in macrophages and alters bactericidal activity

Anke Di; Mary E. Brown; Ludmila V. Deriy; Chunying Li; Frances L. Szeto; Yimei Chen; Ping Huang; Jiankun Tong; Anjaparavanda P. Naren; Vytautas P. Bindokas; H. Clive Palfrey; Deborah J. Nelson

Acidification of phagosomes has been proposed to have a key role in the microbicidal function of phagocytes. Here, we show that in alveolar macrophages the cystic fibrosis transmembrane conductance regulator Cl− channel (CFTR) participates in phagosomal pH control and has bacterial killing capacity. Alveolar macrophages from Cftr−/− mice retained the ability to phagocytose and generate an oxidative burst, but exhibited defective killing of internalized bacteria. Lysosomes from CFTR-null macrophages failed to acidify, although they retained normal fusogenic capacity with nascent phagosomes. We hypothesize that CFTR contributes to lysosomal acidification and that in its absence phagolysosomes acidify poorly, thus providing an environment conducive to bacterial replication.


Journal of Biological Chemistry | 2001

Regulation of Human CLC-3 Channels by Multifunctional Ca2+/Calmodulin-dependent Protein Kinase

Ping Huang; Jie Liu; Anke Di; Nicole C. Robinson; Mark W. Musch; Marcia A. Kaetzel; Deborah J. Nelson

The multifunctional calcium/calmodulin-dependent protein kinase II, CaMKII, has been shown to regulate chloride movement and cellular function in both excitable and non-excitable cells. We show that the plasma membrane expression of a member of the ClC family of Cl−channels, human CLC-3 (hCLC-3), a 90-kDa protein, is regulated by CaMKII. We cloned the full-length hCLC-3 gene from the human colonic tumor cell line T84, previously shown to express a CaMKII-activated Cl− conductance (ICl,CaMKII), and transfected this gene into the mammalian epithelial cell line tsA, which lacks endogenous expression of ICl,CaMKII. Biotinylation experiments demonstrated plasma membrane expression of hCLC-3 in the stably transfected cells. In whole cell patch clamp experiments, autonomously active CaMKII was introduced into tsA cells stably transfected with hCLC-3 via the patch pipette. Cells transfected with the hCLC-3 gene showed a 22-fold increase in current density over cells expressing the vector alone. Kinase-dependent current expression was abolished in the presence of the autocamtide-2-related inhibitory peptide, a specific inhibitor of CaMKII. A mutation of glycine 280 to glutamic acid in the conserved motif in the putative pore region of the channel changed anion selectivity from I− > Cl− to Cl− > I−. These results indicate that hCLC-3 encodes a Cl− channel that is regulated by CaMKII-dependent phosphorylation.


Journal of Experimental Medicine | 2005

Lysophosphatidic acid inhibits cholera toxin-induced secretory diarrhea through CFTR-dependent protein interactions

Chunying Li; Keanna S. Dandridge; Anke Di; Kevin L. Marrs; Erica L. Harris; Koushik Roy; John S. Jackson; Natalia Makarova; Yuko Fujiwara; Patricia L. Farrar; Deborah J. Nelson; Gabor Tigyi; Anjaparavanda P. Naren

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized primarily at the apical or luminal surfaces of epithelial cells that line the airway, gut, and exocrine glands; it is well established that CFTR plays a pivotal role in cholera toxin (CTX)-induced secretory diarrhea. Lysophosphatidic acid (LPA), a naturally occurring phospholipid present in blood and foods, has been reported to play a vital role in a variety of conditions involving gastrointestinal wound repair, apoptosis, inflammatory bowel disease, and diarrhea. Here we show, for the first time, that type 2 LPA receptors (LPA2) are expressed at the apical surface of intestinal epithelial cells, where they form a macromolecular complex with Na+/H+ exchanger regulatory factor–2 and CFTR through a PSD95/Dlg/ZO-1–based interaction. LPA inhibited CFTR-dependent iodide efflux through LPA2-mediated Gi pathway, and LPA inhibited CFTR-mediated short-circuit currents in a compartmentalized fashion. CFTR-dependent intestinal fluid secretion induced by CTX in mice was reduced substantially by LPA administration; disruption of this complex using a cell-permeant LPA2-specific peptide reversed LPA2-mediated inhibition. Thus, LPA-rich foods may represent an alternative method of treating certain forms of diarrhea.


Nature Immunology | 2012

The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation

Anke Di; Xiao Pei Gao; Feng Qian; Takeshi Kawamura; Jin Han; Claudie Hecquet; Richard D. Ye; Stephen M. Vogel; Asrar B. Malik

The NADPH oxidase activity of phagocytes and its generation of reactive oxygen species (ROS) is critical for host defense, but ROS overproduction can also lead to inflammation and tissue injury. Here we report that TRPM2, a nonselective and redox-sensitive cation channel, inhibited ROS production in phagocytic cells and prevented endotoxin-induced lung inflammation in mice. TRPM2-deficient mice challenged with endotoxin (lipopolysaccharide) had an enhanced inflammatory response and diminished survival relative to that of wild-type mice challenged with endotoxin. TRPM2 functioned by dampening NADPH oxidase–mediated ROS production through depolarization of the plasma membrane in phagocytes. As ROS also activate TRPM2, our findings establish a negative feedback mechanism for the inactivation of ROS production through inhibition of the membrane potential–sensitive NADPH oxidase.


Proceedings of the National Academy of Sciences of the United States of America | 2002

CFTR chloride channels are regulated by a SNAP-23/syntaxin 1A complex

Estelle Cormet-Boyaka; Anke Di; Steven Y. Chang; Anjaparavanda P. Naren; Albert Tousson; Deborah J. Nelson; Kevin L. Kirk

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate membrane fusion reactions in eukaryotic cells by assembling into complexes that link vesicle-associated SNAREs with SNAREs on target membranes (t-SNAREs). Many SNARE complexes contain two t-SNAREs that form a heterodimer, a putative intermediate in SNARE assembly. Individual t-SNAREs (e.g., syntaxin 1A) also regulate synaptic calcium channels and cystic fibrosis transmembrane conductance regulator (CFTR), the epithelial chloride channel that is defective in cystic fibrosis. Whether the regulation of ion channels by individual t-SNAREs is related to SNARE complex assembly and membrane fusion is unknown. Here we show that CFTR channels are coordinately regulated by two cognate t-SNAREs, SNAP-23 (synaptosome-associated protein of 23 kDa) and syntaxin 1A. SNAP-23 physically associates with CFTR by binding to its amino-terminal tail, a region that modulates channel gating. CFTR-mediated chloride currents are inhibited by introducing excess SNAP-23 into HT29-Cl.19A epithelial cells. Conversely, CFTR activity is stimulated by a SNAP-23 antibody that blocks the binding of this t-SNARE to the CFTR amino-terminal tail. The physical and functional interactions between SNAP-23 and CFTR depend on syntaxin 1A, which binds to both proteins. We conclude that CFTR channels are regulated by a t-SNARE complex that may tune CFTR activity to rates of membrane traffic in epithelial cells.


Journal of Clinical Investigation | 2000

Syntaxin 1A is expressed in airway epithelial cells, where it modulates CFTR Cl– currents

Anjaparavanda P. Naren; Anke Di; Estelle Cormet-Boyaka; Prosper N. Boyaka; Jerry R. McGhee; Weihong Zhou; Kimio Akagawa; Tomonori Fujiwara; Ulrich Thome; John F. Engelhardt; Deborah J. Nelson; Kevin L. Kirk

The CFTR Cl(-) channel controls salt and water transport across epithelial tissues. Previously, we showed that CFTR-mediated Cl(-) currents in the Xenopus oocyte expression system are inhibited by syntaxin 1A, a component of the membrane trafficking machinery. This negative modulation of CFTR function can be reversed by soluble syntaxin 1A peptides and by the syntaxin 1A binding protein, Munc-18. In the present study, we determined whether syntaxin 1A is expressed in native epithelial tissues that normally express CFTR and whether it modulates CFTR currents in these tissues. Using immunoblotting and immunofluorescence, we observed syntaxin 1A in native gut and airway epithelial tissues and showed that epithelial cells from these tissues express syntaxin 1A at >10-fold molar excess over CFTR. Syntaxin 1A is seen near the apical cell surfaces of human bronchial airway epithelium. Reagents that disrupt the CFTR-syntaxin 1A interaction, including soluble syntaxin 1A cytosolic domain and recombinant Munc-18, augmented cAMP-dependent CFTR Cl(-) currents by more than 2- to 4-fold in mouse tracheal epithelial cells and cells derived from human nasal polyps, but these reagents did not affect CaMK II-activated Cl(-) currents in these cells.


Current Opinion in Pharmacology | 2010

TRP channels and the control of vascular function.

Anke Di; Asrar B. Malik

Mammalian TRP channels are grouped into six subfamilies (TRPC, TRPM, TRPV, TRPA, TRPP, and TRPML) based on the homology of the amino acid sequence. They are nonselective cation-permeable channels, most of which are permeable for Ca(2+). Growing evidence demonstrates important roles of TRP channel in controlling vascular function including endothelial permeability, responses to oxidative stress, myogenic tone, cellular proliferative activity, and thermoregulation. TRP channels are activated by a variety of stimuli, including calcium store depletion, mechanical perturbations, receptor activation, and changes in temperature and osmolarity. This diversity of activating mechanisms could be consistent with the potential multiple functions of the TRP superfamily. This review summarizes the burgeoning understanding of these cation channels in the control of vascular function.


Nature Cell Biology | 2002

Quantal release of free radicals during exocytosis of phagosomes

Anke Di; Boris Krupa; Vytas P. Bindokas; Yimei Chen; Mary E. Brown; H. Clive Palfrey; Anjaparavanda P. Naren; Kevin L. Kirk; Deborah J. Nelson

Secretion of lysosomes and related organelles is important for immune system function. High-resolution membrane capacitance techniques were used to track changes in membrane area in single phagocytes during opsonized polystyrene bead uptake and release. Secretagogue stimulation of cells preloaded with beads resulted in immediate vesicle discharge, visualized as step increases in capacitance. The size of the increases were consistent with phagosome size. This hypothesis was confirmed by direct observation of dye release from bead-containing phagosomes after secretagogue stimulation. Capacitance recordings of exocytosis were correlated with quantal free radical release, as determined by amperometry. Thus, phagosomes undergo regulated secretion in macrophages, one function of which may be to deliver sequestered free radicals to the extracellular space.


Circulation Research | 2014

Cooperative Interaction of trp Melastatin Channel Transient Receptor Potential (TRPM2) With Its Splice Variant TRPM2 Short Variant Is Essential for Endothelial Cell Apoptosis

Claudie Hecquet; Min Zhang; Manish Mittal; Stephen M. Vogel; Anke Di; Xiaopei Gao; Marcelo G. Bonini; Asrar B. Malik

Rationale: Oxidants generated by activated endothelial cells are known to induce apoptosis, a pathogenic feature of vascular injury and inflammation from multiple pathogeneses. The melastatin-family transient receptor potential 2 (TRPM2) channel is an oxidant-sensitive Ca2+ permeable channel implicated in mediating apoptosis; however, the mechanisms of gating of the supranormal Ca2+ influx required for initiating of apoptosis are not understood. Objective: Here, we addressed the role of TRPM2 and its interaction with the short splice variant TRPM2 short variant (TRPM2-S) in mediating the Ca2+ entry burst required for induction of endothelial cell apoptosis. Methods and Results: We observed that TRPM2-S was basally associated with TRPM2 in the endothelial plasmalemma, and this interaction functioned to suppress TRPM2-dependent Ca2+ gating constitutively. Reactive oxygen species production in endothelial cells or directly applying reactive oxygen species induced protein kinase C-&agr; activation and phosphorylation of TRPM2 at Ser 39. This in turn stimulated a large entry of Ca2+ and activated the apoptosis pathway. A similar TRPM2-dependent endothelial apoptosis mechanism was seen in intact vessels. The protein kinase C-&agr;–activated phosphoswitch opened the TRPM2 channel to allow large Ca2+ influx by releasing TRPM2-S inhibition of TRPM2, which in turn activated caspase-3 and cleaved the caspase substrate poly(ADP-ribose) polymerase. Conclusions: Here, we describe a fundamental mechanism by which activation of the trp superfamily TRPM2 channel induces apoptosis of endothelial cells. The signaling mechanism involves reactive oxygen species–induced protein kinase C-&agr; activation resulting in phosphorylation of TRPM2-S that allows enhanced TRPM2-mediated gating of Ca2+ and activation of the apoptosis program. Strategies aimed at preventing the uncoupling of TRPM2-S from TRPM2 and subsequent Ca2+ gating during oxidative stress may mitigate endothelial apoptosis and its consequences in mediating vascular injury and inflammation.


Journal of Biological Chemistry | 2010

A novel function of sphingosine kinase 1 suppression of JNK activity in preventing inflammation and injury

Anke Di; Takeshi Kawamura; Xiao Pei Gao; Haiyang Tang; Evgeny Berdyshev; Stephen M. Vogel; You Yang Zhao; Tiffany Sharma; Kurt Bachmaier; Jingsong Xu; Asrar B. Malik

The mechanism underlying the protective effect of sphingosine kinase 1 (SphK1) in inflammatory injury is not clear. We demonstrated using SphK1-null mice (SphK1−/−) the crucial role of SphK1 in suppressing lipopolysaccharide-induced neutrophil oxidant production and sequestration in lungs and mitigating lung inflammatory injury. This effect of SphK1 was independent of the production of sphingosine 1-phosphate, the product of SphK1 activity. The anti-inflammatory effect of SphK1 in the lipopolysaccharide model was mediated through SphK1 interaction with JNK. SphK1 stabilization of JNK in turn inhibited JNK binding to the JNK-interacting protein 3 (JIP3) and thus abrogated the activation of NADPH oxidase and oxidant generation and resultant NF-κB activation. Therefore, SphK1-mediated down-regulation of JNK activity serves to dampen inflammation and tissue injury.

Collaboration


Dive into the Anke Di's collaboration.

Top Co-Authors

Avatar

Asrar B. Malik

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen M. Vogel

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Xiaopei Gao

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Anjaparavanda P. Naren

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Claudie Hecquet

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manish Mittal

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Takeshi Kawamura

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge