Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anke Henne is active.

Publication


Featured researches published by Anke Henne.


Journal of Bacteriology | 2004

Structural and Functional Characterization of Gene Clusters Directing Nonribosomal Synthesis of Bioactive Cyclic Lipopeptides in Bacillus amyloliquefaciens Strain FZB42

Alexandra Koumoutsi; Xiao-Hua Chen; Anke Henne; Heiko Liesegang; Gabriele Hitzeroth; Peter Franke; Joachim Vater; Rainer Borriss

The environmental strain Bacillus amyloliquefaciens FZB42 promotes plant growth and suppresses plant pathogenic organisms present in the rhizosphere. We sampled sequenced the genome of FZB42 and identified 2,947 genes with >50% identity on the amino acid level to the corresponding genes of Bacillus subtilis 168. Six large gene clusters encoding nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) occupied 7.5% of the whole genome. Two of the PKS and one of the NRPS encoding gene clusters were unique insertions in the FZB42 genome and are not present in B. subtilis 168. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis revealed expression of the antibiotic lipopeptide products surfactin, fengycin, and bacillomycin D. The fengycin (fen) and the surfactin (srf) operons were organized and located as in B. subtilis 168. A large 37.2-kb antibiotic DNA island containing the bmy gene cluster was attributed to the biosynthesis of bacillomycin D. The bmy island was found inserted close to the fen operon. The responsibility of the bmy, fen, and srf gene clusters for the production of the corresponding secondary metabolites was demonstrated by cassette mutagenesis, which led to the loss of the ability to produce these peptides. Although these single mutants still largely retained their ability to control fungal spread, a double mutant lacking both bacillomycin D and fengycin was heavily impaired in its ability to inhibit growth of phytopathogenic fungi, suggesting that both lipopeptides act in a synergistic manner.


Nature Biotechnology | 2004

The genome sequence of the extreme thermophile Thermus thermophilus

Anke Henne; Holger Brüggemann; Carsten Raasch; Arnim Wiezer; Thomas Hartsch; Heiko Liesegang; Andre Johann; Tanja Lienard; Olivia Gohl; Rosa Martinez-Arias; Carsten Jacobi; Vytaute Starkuviene; Silke Schlenczeck; Silke Dencker; Robert Huber; Hans-Peter Klenk; Wilfried Kramer; Rainer Merkl; Gerhard Gottschalk; Hans-Joachim Fritz

Thermus thermophilus HB27 is an extremely thermophilic, halotolerant bacterium, which was originally isolated from a natural thermal environment in Japan. This organism has considerable biotechnological potential; many thermostable proteins isolated from members of the genus Thermus are indispensable in research and in industrial applications. We present here the complete genome sequence of T. thermophilus HB27, the first for the genus Thermus. The genome consists of a 1,894,877 base pair chromosome and a 232,605 base pair megaplasmid, designated pTT27. The 2,218 identified putative genes were compared to those of the closest relative sequenced so far, the mesophilic bacterium Deinococcus radiodurans. Both organisms share a similar set of proteins, although their genomes lack extensive synteny. Many new genes of potential interest for biotechnological applications were found in T. thermophilus HB27. Candidates include various proteases and key enzymes of other fundamental biological processes such as DNA replication, DNA repair and RNA maturation.


Applied and Environmental Microbiology | 2000

Screening of Environmental DNA Libraries for the Presence of Genes Conferring Lipolytic Activity on Escherichia coli

Anke Henne; Ruth A. Schmitz; Mechthild Bömeke; Gerhard Gottschalk; Rolf Daniel

ABSTRACT Environmental DNA libraries prepared from three different soil samples were screened for genes conferring lipolytic activity onEscherichia coli clones. Screening on triolein agar revealed 1 positive clone out of 730,000 clones, and screening on tributyrin agar revealed 3 positive clones out of 286,000 E. coli clones. Substrate specificity analysis revealed that one recombinant strain harbored a lipase and the other three contained esterases. The genes responsible for the lipolytic activity were identified and characterized.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The genome sequence of Clostridium tetani, the causative agent of tetanus disease

Holger Brüggemann; Sebastian Bäumer; Wolfgang Florian Fricke; Arnim Wiezer; Heiko Liesegang; Iwona Decker; Christina Herzberg; Rosa Martinez-Arias; Rainer Merkl; Anke Henne; Gerhard Gottschalk

Tetanus disease is one of the most dramatic and globally prevalent diseases of humans and vertebrate animals, and has been reported for over 24 centuries. The manifestation of the disease, spastic paralysis, is caused by the second most poisonous substance known, the tetanus toxin, with a human lethal dose of ≈1 ng/kg. Fortunately, this disease is successfully controlled through immunization with tetanus toxoid; nevertheless, according to the World Health Organization, an estimated 400,000 cases still occur each year, mainly of neonatal tetanus. The causative agent of tetanus disease is Clostridium tetani, an anaerobic spore-forming bacterium, whose natural habitat is soil, dust, and intestinal tracts of various animals. Here we report the complete genome sequence of toxigenic C. tetani E88, a variant of strain Massachusetts. The genome consists of a 2,799,250-bp chromosome encoding 2,372 ORFs. The tetanus toxin and a collagenase are encoded on a 74,082-bp plasmid, containing 61 ORFs. Additional virulence-related factors could be identified, such as an array of surface-layer and adhesion proteins (35 ORFs), some of them unique to C. tetani. Comparative genomics with the genomes of Clostridium perfringens, the causative agent of gas gangrene, and Clostridium acetobutylicum, a nonpathogenic solvent producer, revealed a remarkable capacity of C. tetani: The organism can rely on an extensive sodium ion bioenergetics. Additional candidate genes involved in the establishment and maintenance of a pathogenic lifestyle of C. tetani are presented.


Journal of Molecular Microbiology and Biotechnology | 2004

The Complete Genome Sequence of Bacillus licheniformis DSM13, an Organism with Great Industrial Potential

Birgit Veith; Christina Herzberg; Silke Steckel; Jörg Feesche; Karl Heinz Maurer; Petra Ehrenreich; Sebastian Bäumer; Anke Henne; Heiko Liesegang; Rainer Merkl; Armin Ehrenreich; Gerhard Gottschalk

The genome of Bacillus licheniformis DSM13 consists of a single chromosome that has a size of 4,222,748 base pairs. The average G+C ratio is 46.2%. 4,286 open reading frames, 72 tRNA genes, 7 rRNA operons and 20 transposase genes were identified. The genome shows a marked co-linearity with Bacillus subtilis but contains defined inserted regions that can be identified at the sequence as well as at the functional level. B. licheniformis DSM13 has a well-conserved secretory system, no polyketide biosynthesis, but is able to form the lipopeptide lichenysin. From the further analysis of the genome sequence, we identified conserved regulatory DNA motives, the occurrence of the glyoxylate bypass and the presence of anaerobic ribonucleotide reductase explaining that B. licheniformis is able to grow on acetate and 2,3-butanediol as well as anaerobically on glucose. Many new genes of potential interest for biotechnological applications were found in B. licheniformis; candidates include proteases, pectate lyases, lipases and various polysaccharide degrading enzymes.


Journal of Bacteriology | 2006

The Genome Sequence of Methanosphaera stadtmanae Reveals Why This Human Intestinal Archaeon Is Restricted to Methanol and H2 for Methane Formation and ATP Synthesis

Wolfgang Florian Fricke; Henning Seedorf; Anke Henne; Markus Krüer; Heiko Liesegang; Reiner Hedderich; Gerhard Gottschalk; Rudolf K. Thauer

Methanosphaera stadtmanae has the most restricted energy metabolism of all methanogenic archaea. This human intestinal inhabitant can generate methane only by reduction of methanol with H2 and is dependent on acetate as a carbon source. We report here the genome sequence of M. stadtmanae, which was found to be composed of 1,767,403 bp with an average G+C content of 28% and to harbor only 1,534 protein-encoding sequences (CDS). The genome lacks 37 CDS present in the genomes of all other methanogens. Among these are the CDS for synthesis of molybdopterin and for synthesis of the carbon monoxide dehydrogenase/acetyl-coenzyme A synthase complex, which explains why M. stadtmanae cannot reduce CO2 to methane or oxidize methanol to CO2 and why this archaeon is dependent on acetate for biosynthesis of cell components. Four sets of mtaABC genes coding for methanol:coenzyme M methyltransferases were found in the genome of M. stadtmanae. These genes exhibit homology to mta genes previously identified in Methanosarcina species. The M. stadtmanae genome also contains at least 323 CDS not present in the genomes of all other archaea. Seventy-three of these CDS exhibit high levels of homology to CDS in genomes of bacteria and eukaryotes. These 73 CDS include 12 CDS which are unusually long (>2,400 bp) with conspicuous repetitive sequence elements, 13 CDS which exhibit sequence similarity on the protein level to CDS encoding enzymes involved in the biosynthesis of cell surface antigens in bacteria, and 5 CDS which exhibit sequence similarity to the subunits of bacterial type I and III restriction-modification systems.


Applied and Environmental Microbiology | 2003

Construction and Screening of Metagenomic Libraries Derived from Enrichment Cultures: Generation of a Gene Bank for Genes Conferring Alcohol Oxidoreductase Activity on Escherichia coli

Anja Knietsch; Tanja Waschkowitz; Susanne Bowien; Anke Henne; Rolf Daniel

ABSTRACT Enrichment of microorganisms with special traits and the construction of metagenomic libraries by direct cloning of environmental DNA have great potential for identifying genes and gene products for biotechnological purposes. We have combined these techniques to isolate novel genes conferring oxidation of short-chain (C2 to C4) polyols or reduction of the corresponding carbonyls. In order to favor the growth of microorganisms containing the targeted genes, samples collected from four different environments were incubated in the presence of glycerol and 1,2-propanediol. Subsequently, the DNA was extracted from the four samples and used to construct complex plasmid libraries. Approximately 100,000 Escherichia coli strains of each library per test substrate were screened for the production of carbonyls from polyols on indicator agar. Twenty-four positive E. coli clones were obtained during the initial screen. Sixteen of them contained a plasmid (pAK101 to pAK116) which conferred a stable carbonyl-forming phenotype. Eight of the positive clones exhibited NAD(H)-dependent alcohol oxidoreductase activity with polyols or carbonyls as the substrates in crude extracts. Sequencing revealed that the inserts of pAK101 to pAK116 encoded 36 complete and 17 incomplete presumptive protein-encoding genes. Fifty of these genes showed similarity to sequenced genes from a broad collection of different microorganisms. The genes responsible for the carbonyl formation of E. coli were identified for nine of the plasmids (pAK101, pAK102, pAK105, pAK107 to pAK110, pAK115, and pAK116). Analyses of the amino acid sequences deduced from these genes revealed that three (orf12, orf14, and orf22) encoded novel alcohol dehydrogenases of different types, four (orf5, sucB, fdhD, and yabF) encoded novel putative oxidoreductases belonging to groups distinct from alcohol dehydrogenases, one (glpK) encoded a putative glycerol kinase, and one (orf1) encoded a protein which showed no similarity to any other known gene product.


Journal of Bacteriology | 2002

A Single Nucleotide Exchange in the wzy Gene Is Responsible for the Semirough O6 Lipopolysaccharide Phenotype and Serum Sensitivity of Escherichia coli Strain Nissle 1917

Lubomir Grozdanov; Ulrich Zähringer; Gabriele Blum-Oehler; Lore Brade; Anke Henne; Yuriy A. Knirel; Ursula Schombel; Jürgen Schulze; Ulrich Sonnenborn; Gerhard Gottschalk; Jörg Hacker; Ernst Th. Rietschel; Ulrich Dobrindt

Structural analysis of lipopolysaccharide (LPS) isolated from semirough, serum-sensitive Escherichia coli strain Nissle 1917 (DSM 6601, serotype O6:K5:H1) revealed that this strains LPS contains a bisphosphorylated hexaacyl lipid A and a tetradecasaccharide consisting of one E. coli O6 antigen repeating unit attached to the R1-type core. Configuration of the GlcNAc glycosidic linkage between O-antigen oligosaccharide and core (beta) differs from that interlinking the repeating units in the E. coli O6 antigen polysaccharide (alpha). The wa(*) and wb(*) gene clusters of strain Nissle 1917, required for LPS core and O6 repeating unit biosyntheses, were subcloned and sequenced. The DNA sequence of the wa(*) determinant (11.8 kb) shows 97% identity to other R1 core type-specific wa(*) gene clusters. The DNA sequence of the wb(*) gene cluster (11 kb) exhibits no homology to known DNA sequences except manC and manB. Comparison of the genetic structures of the wb(*)(O6) (wb(*) from serotype O6) determinants of strain Nissle 1917 and of smooth and serum-resistant uropathogenic E. coli O6 strain 536 demonstrated that the putative open reading frame encoding the O-antigen polymerase Wzy of strain Nissle 1917 was truncated due to a point mutation. Complementation with a functional wzy copy of E. coli strain 536 confirmed that the semirough phenotype of strain Nissle 1917 is due to the nonfunctional wzy gene. Expression of a functional wzy gene in E. coli strain Nissle 1917 increased its ability to withstand antibacterial defense mechanisms of blood serum. These results underline the importance of LPS for serum resistance or sensitivity of E. coli.


FEBS Letters | 2002

Functional characterization of GcpE, an essential enzyme of the non‐mevalonate pathway of isoprenoid biosynthesis

Ann-Kristin Kollas; Evert C. Duin; Matthias Eberl; Boran Altincicek; Martin Hintz; Armin Reichenberg; Dajana Henschker; Anke Henne; Irina Steinbrecher; Dmitry N Ostrovsky; Reiner Hedderich; Ewald Beck; Hassan Jomaa; Jochen Wiesner

The gcpE gene product controls one of the terminal steps of isoprenoid biosynthesis via the mevalonate independent 2‐C‐methyl‐D‐erythritol‐4‐phosphate (MEP) pathway. This pathway is utilized by a variety of eubacteria, the plastids of algae and higher plants, and the plastid‐like organelle of malaria parasites. Recombinant GcpE protein from the hyperthermophilic bacterium Thermus thermophilus was produced in Escherichia coli and purified under dioxygen‐free conditions. The protein was enzymatically active in converting 2‐C‐methyl‐D‐erythritol‐2,4‐cyclodiphosphate (MEcPP) into (E)‐4‐hydroxy‐3‐methyl‐but‐2‐enyl diphosphate (HMBPP) in the presence of dithionite as reductant. The maximal specific activity was 0.6 μmol min−1 mg−1 at pH 7.5 and 55°C. The k cat value was 0.4 s−1 and the K m value for HMBPP 0.42 mM.


Journal of Molecular Microbiology and Biotechnology | 2003

Metagenomes of Complex Microbial Consortia Derived from Different Soils as Sources for Novel Genes Conferring Formation of Carbonyls from Short-Chain Polyols on Escherichia coli

Anja Knietsch; Tanja Waschkowitz; Susanne Bowien; Anke Henne; Rolf Daniel

Metagenomic DNA libraries from three different soil samples (meadow, sugar beet field, cropland) were constructed. The three unamplified libraries comprised approximately 1,267,000 independent clones and harbored approximately 4.05 Gbp of environmental DNA. Approximately 300,000 recombinant Escherichia coli strains of each library per test substrate were screened for the production of carbonyls from short-chain (C2 to C4) polyols such as 1,2-ethanediol, 2,3-butanediol, and a mixture of glycerol and 1,2-propanediol on indicator agar. Twenty-four positive E. coli clones were obtained during the initial screen. Fifteen of them contained recombinant plasmids, designated pAK201–215, which conferred a stable carbonyl-forming phenotype on E. coli. Sequencing revealed that the inserts of pAK201–215 encoded 26 complete and 14 incomplete predicted protein-encoding genes. Most of these genes were similar to genes with unknown functions from other microorganisms or unrelated to any other known gene. The further analysis was focused on the 7 plasmids (pAK204, pAK206, pAK208, and pAK210–213) recovered from the positive clones, which exhibited an NAD(H)-dependent alcohol oxidoreductase activity with polyols or the correlating carbonyls as substrates in crude extracts. Three genes (orf6, orf24, and orf25) conferring this activity were identified during subcloning of the inserts of pAK204, pAK211, and pAK212. The sequences of the three deduced gene products revealed no significant similarities to known alcohol oxidoreductases, but contained putative glycine-rich regions, which are characteristic for binding of nicotinamide cofactors.

Collaboration


Dive into the Anke Henne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Birgit Veith

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rainer Merkl

University of Regensburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge