Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anke Hinney is active.

Publication


Featured researches published by Anke Hinney.


Nature | 2012

Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human

Atsuhiko Ichimura; Akira Hirasawa; Odile Poulain-Godefroy; Amélie Bonnefond; Takafumi Hara; Loic Yengo; Ikuo Kimura; Audrey Leloire; Ning Liu; Keiko Iida; Hélène Choquet; Philippe Besnard; Cécile Lecoeur; Sidonie Vivequin; Kumiko Ayukawa; Masato Takeuchi; Kentaro Ozawa; Maithe Tauber; Claudio Maffeis; Anita Morandi; Raffaella Buzzetti; Paul Elliott; Anneli Pouta; Marjo-Riitta Jarvelin; Antje Körner; Wieland Kiess; Marie Pigeyre; Roberto Caiazzo; Wim Van Hul; Luc Van Gaal

Free fatty acids provide an important energy source as nutrients, and act as signalling molecules in various cellular processes. Several G-protein-coupled receptors have been identified as free-fatty-acid receptors important in physiology as well as in several diseases. GPR120 (also known as O3FAR1) functions as a receptor for unsaturated long-chain free fatty acids and has a critical role in various physiological homeostasis mechanisms such as adipogenesis, regulation of appetite and food preference. Here we show that GPR120-deficient mice fed a high-fat diet develop obesity, glucose intolerance and fatty liver with decreased adipocyte differentiation and lipogenesis and enhanced hepatic lipogenesis. Insulin resistance in such mice is associated with reduced insulin signalling and enhanced inflammation in adipose tissue. In human, we show that GPR120 expression in adipose tissue is significantly higher in obese individuals than in lean controls. GPR120 exon sequencing in obese subjects reveals a deleterious non-synonymous mutation (p.R270H) that inhibits GPR120 signalling activity. Furthermore, the p.R270H variant increases the risk of obesity in European populations. Overall, this study demonstrates that the lipid sensor GPR120 has a key role in sensing dietary fat and, therefore, in the control of energy balance in both humans and rodents.


PLOS Genetics | 2010

Two new Loci for body-weight regulation identified in a joint analysis of Genome-Wide Association Studies for Early-Onset Extreme Obesity in French and German Study Groups

André Scherag; Christian Dina; Anke Hinney; Vincent Vatin; Susann Scherag; Carla I. G. Vogel; Timo D. Müller; Harald Grallert; H.-Erich Wichmann; Beverley Balkau; Barbara Heude; Marjo-Riitta Järvelin; Anna-Liisa Hartikainen; Claire Levy-Marchal; Jacques Weill; Jérôme Delplanque; Antje Körner; Wieland Kiess; Peter Kovacs; Nigel W. Rayner; Inga Prokopenko; Mark McCarthy; Helmut Schäfer; Ivonne Jarick; Heiner Boeing; Eva Fisher; Thomas Reinehr; Joachim Heinrich; Peter Rzehak; Dietrich Berdel

Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals (GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85×10−8 in the DISCOVERY step) and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide reductase A gene; p = 4.84×10−7), the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at ∼1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial degree between children and adults.


American Journal of Medical Genetics | 2008

Meta-analysis of genome-wide linkage scans of attention deficit hyperactivity disorder

Kaixin Zhou; Astrid Dempfle; Mauricio Arcos-Burgos; Steven C. Bakker; Tobias Banaschewski; Joseph Biederman; Jan K. Buitelaar; F. Xavier Castellanos; Alysa E. Doyle; Richard P. Ebstein; Jenny Ekholm; Paola Forabosco; Barbara Franke; Christine M. Freitag; Susann Friedel; Michael Gill; Johannes Hebebrand; Anke Hinney; Christian Jacob; Klaus-Peter Lesch; Sandra K. Loo; Francisco Lopera; James T. McCracken; James J. McGough; Jobst Meyer; Eric Mick; Ana Miranda; Maximilian Muenke; Fernando Mulas; Stanley F. Nelson

Genetic contribution to the development of attention deficit hyperactivity disorder (ADHD) is well established. Seven independent genome‐wide linkage scans have been performed to map loci that increase the risk for ADHD. Although significant linkage signals were identified in some of the studies, there has been limited replications between the various independent datasets. The current study gathered the results from all seven of the ADHD linkage scans and performed a Genome Scan Meta Analysis (GSMA) to identify the genomic region with most consistent linkage evidence across the studies. Genome‐wide significant linkage (PSR = 0.00034, POR = 0.04) was identified on chromosome 16 between 64 and 83 Mb. In addition there are nine other genomic regions from the GSMA showing nominal or suggestive evidence of linkage. All these linkage results may be informative and focus the search for novel ADHD susceptibility genes.


Molecular Psychiatry | 2006

A genome-wide scan for attention-deficit/hyperactivity disorder in 155 German sib-pairs

Johannes Hebebrand; A. Dempfle; Kathrin Saar; H Thiele; Beate Herpertz-Dahlmann; M. Linder; H. Kiefl; Helmut Remschmidt; U. Hemminger; Andreas Warnke; U Knölker; Philip Heiser; Susann Friedel; Anke Hinney; Helmut Schäfer; Peter Nürnberg; Kerstin Konrad

Three groups have previously performed genome scans in attention-deficit/hyperactivity disorder (ADHD); linkage to chromosome 5p13 was detected in all of the respective studies. In the current study, we performed a whole-genome scan with 102 German families with two or more offspring who currently fulfilled the diagnostic criteria for ADHD. Including subsequent fine mapping on chromosome 5p, a total of 523 markers were genotyped. The highest nonparametric multipoint LOD score of 2.59 (empirical genome-wide significance 0.1) was obtained for chromosome 5p at 17 cM (according to the Marshfield map). Subsequent analyses revealed (a) a higher LOD score of 3.37 at 39 cM for a quantitative severity score based on symptoms of inattention than for hyperactivity/impulsivity (LOD score of 1.11 at 59 cM), and (b) an HLOD of 4.75 (empirical genome-wide significance 0.001) based on a parametric model assuming dominant inheritance. The locus of the solute carrier 6A3 (SLC6A3; dopamine transporter 1; DAT1) localizes to 5p15.33; the gene has repeatedly been implicated in the etiology of ADHD. However, in our sample the DAT1 VNTR did not show association with ADHD. We additionally identified nominal evidence for linkage to chromosomes 6q, 7p, 9q, 11 q, 12q and 17p, which had also been identified in previous scans. Despite differences in ethnicity, ascertainment and phenotyping schemes, linkage results in ADHD appear remarkably consistent.


American Journal of Human Genetics | 1999

Phenotypes in three pedigrees with autosomal dominant obesity caused by haploinsufficiency mutations in the melanocortin-4 receptor gene

Mani Sina; Anke Hinney; Andreas Ziegler; Tanja Neupert; Hermann Mayer; Wolfgang Siegfried; Werner F. Blum; Helmut Remschmidt; Johannes Hebebrand

Recently, haploinsufficiency mutations in the melanocortin-4 receptor gene (MC4-R) were detected which were assumed to lead to the phenotype of extreme obesity. Previously, we detected three obese carriers among 306 index patients. Here we describe the detection of one haploinsufficiency carrier in an additional study group of 186 obese individuals. We subsequently genotyped and phenotyped 43 family members of these four index patients, two of whom were second-degree cousins. A total of 19 carriers were identified. Extreme obesity was the predominating phenotype. However, moderate obesity occurred in three of the carriers. No other specific phenotypic abnormalities were detected. Female haploinsufficiency carriers were heavier than male carriers in the respective families, a finding similar to findings in MC4-R-knockout mice. In conclusion, our data fully support the etiologic role of MC4-R haploinsufficiency mutations in obesity.


International Journal of Obesity | 2007

The V103I polymorphism of the MC4R gene and obesity: population based studies and meta-analysis of 29 563 individuals

Elizabeth H. Young; Nicholas J. Wareham; Sadaf Farooqi; Anke Hinney; Johannes Hebebrand; André Scherag; Stephen O'Rahilly; Inês Barroso; Manjinder S. Sandhu

Background:Previous studies have suggested that a variant in the melanocortin-4 receptor (MC4R) gene is important in protecting against common obesity. Larger studies are needed, however, to confirm this relation.Methods:We assessed the association between the V103I polymorphism in the MC4R gene and obesity in three UK population based cohort studies, totalling 8304 individuals. We also did a meta-analysis of relevant studies, involving 10 975 cases and 18 588 controls, to place our findings in context.Finding:In an analysis of all studies, individuals carrying the isoleucine allele had an 18% (95% confidence interval 4–30%, P=0.015) lower risk of obesity compared with non-carriers. There was no heterogeneity among studies and no apparent publication bias.Interpretation:This study confirms that the V103I polymorphism protects against human obesity at a population level. As such it provides proof of principle that specific gene variants may, at least in part, explain susceptibility and resistance to common forms of human obesity. A better understanding of the mechanisms underlying this association will help determine whether changes in MC4R activity have therapeutic potential.


Atherosclerosis | 2010

Genetic variation at chromosome 1p13.3 affects sortilin mRNA expression, cellular LDL-uptake and serum LDL levels which translates to the risk of coronary artery disease

Patrick Linsel-Nitschke; Jörg Heeren; Zouhair Aherrahrou; Petra Bruse; Christian Gieger; Thomas Illig; Holger Prokisch; Katharina Heim; Angela Doering; Annette Peters; Thomas Meitinger; H.-Erich Wichmann; Anke Hinney; Thomas Reinehr; Christian L. Roth; Jan R. Ortlepp; Mouhidien Soufi; Alexander M. Sattler; Jürgen R. Schaefer; Klaus Stark; Christian Hengstenberg; Arne S. Schaefer; Stefan Schreiber; Florian Kronenberg; Nilesh J. Samani; Heribert Schunkert; Jeanette Erdmann

BACKGROUND A single nucleotide polymorphism (SNP) rs599839 located at chromosome 1p13.3 has previously been associated with risk of coronary artery disease (CAD) and with serum levels of low-density lipoprotein cholesterol (LDL-C). A functional link explaining the association of SNP rs599839 with LDL-C levels and CAD risk has not yet been elucidated. METHODS We analyzed the association of rs599839 with LDL-C in 6605 individuals across a wide age spectrum and with CAD in four case-control studies comprising 4287 cases and 7572 controls. Genome-wide expression array data was used to assess the association of SNP rs599839 with gene expression at chromosome 1p13. Finally, we overexpressed sortilin in transfected cells to study LDL-uptake in vitro. RESULTS Each copy of the G-allele of rs599839 associated with a decrease of serum LDL-C by 0.14 mmol/L (90% confidence interval (CI) 0.09-0.17 mmol/L, p=2.6 x 10(-11)). Moreover, each copy of the G-allele associated with a 9% decrease of CAD risk (90% CI 4-14%) in the presently studied four case-control samples and with a 13% decrease (90% CI 10-17%, p=2.18 x 10(-9)) in a pooled meta-analysis including recent genome-wide association studies on CAD. The same allele was associated with higher mRNA-expression levels of the multiligand receptor sortilin (log transformed mRNA AA vs. GG=8.31 vs. 8.55; p=0.01). Overexpression of SORT1 cDNA resulted in a significant increase in LDL-particle uptake (+23%, p=0.01). CONCLUSIONS Rs599839 associates with decreased LDL-C and a lower risk of CAD. Effects appear to be mediated by increased sortilin expression and subsequently enhanced LDL-uptake into cells.


The International Journal of Neuropsychopharmacology | 2006

Transmission disequilibrium of polymorphic variants in the tryptophan hydroxylase-2 gene in children and adolescents with obsessive–compulsive disorder

Rainald Mössner; Susanne Walitza; Frank Geller; André Scherag; Lise Gutknecht; Christian Jacob; Lisa Bogusch; Helmut Remschmidt; Michael Simons; Beate Herpertz-Dahlmann; Christian Fleischhaker; Eberhard Schulz; Andreas Warnke; Anke Hinney; Christoph Wewetzer; Klaus-Peter Lesch

Dysfunction of the central serotonergic system has been implicated in the pathophysiology of obsessive-compulsive disorder (OCD). The genetic contribution to the development of OCD is particularly high in early-onset OCD. The aim of this study was to investigate the effect of polymorphic variants in the gene of the novel brain-specific tryptophan hydroxylase-2 (TPH2), the rate-limiting enzyme of serotonin (5-HT) synthesis in the brain, in OCD with disease onset in childhood and adolescence. We analysed two common single nucleotide polymorphisms (SNPs) of TPH2 in the putative transcriptional control region and in intron 2 of the TPH2 gene in a unique family-based sample of OCD patients with onset of the disease in childhood and adolescence comprising 71 complete, independent trios. The transmission disequilibrium test was used to determine transmission of alleles and haplotypes from parents to offspring. In this first study of TPH2 in OCD, analysis of the SNPs, rs4570625 and rs4565946, revealed a significant preferential transmission of haplotype G-C to children and adolescents with OCD. Moreover, a trend towards preferential transmission of the C allele of SNP rs4565946 to the patients was found. The genotype relative-risk estimate for homozygous C allele carriers of SNP rs4565946 was 2.58 (95% CI 0.98-6.82). In conclusion, the results link TPH2 variations to the pathogenesis of early-onset OCD and further support the aetiological relevance of 5-HT signalling in OCD.


Child and Adolescent Psychiatric Clinics of North America | 2009

Environmental and Genetic Risk Factors in Obesity

Johannes Hebebrand; Anke Hinney

Because of its high prevalence and the associated medical and psychosocial risks, research into the causes of childhood obesity has experienced a tremendous upswing. Formal genetic data based on twin, adoption, and family studies lead to the conclusion that at least 50% of the interindividual variance of the body mass index (BMI; defined as weight in kilograms divided by height in meters squared) is due to genetic factors. As a result of the recent advent of genome-wide association studies, the first polygenes involved in body weight regulation have been detected. Each of the predisposing alleles explain a few hundred grams of body weight. More polygenes will be detected in the near future, thus for the first time allowing in-depth analyses of gene-gene and gene-environment interactions. They also will enable developmental studies to assess the effect of such alleles throughout childhood and adulthood. The recent increase in obesity prevalence rates illustrates the extreme relevance of environmental factors for body weight. Similar to polygenes, the effect sizes of most such environmental factors are likely to be small, thus rendering their detection difficult. In addition, the validation of the true causality of such factors is not a straightforward task. Important factors are socioeconomic status and television consumption. The authors conclude by briefly assessing implications for treatment and prevention of childhood obesity.


PLOS ONE | 2008

Lifelong reduction of LDL-cholesterol related to a common variant in the LDL-receptor gene decreases the risk of coronary artery disease--a Mendelian Randomisation study.

Patrick Linsel-Nitschke; Anika Götz; Jeanette Erdmann; Ingrid Brænne; Peter S. Braund; Christian Hengstenberg; Klaus Stark; Marcus Fischer; Stefan Schreiber; Nour Eddine El Mokhtari; Arne S. Schaefer; Jürgen Schrezenmeier; Diana Rubin; Anke Hinney; Thomas Reinehr; Christian L. Roth; Jan R. Ortlepp; Peter Hanrath; Alistair S. Hall; Massimo Mangino; Wolfgang Lieb; Claudia Lamina; Iris M. Heid; Angela Doering; Christian Gieger; Annette Peters; Thomas Meitinger; H.-Erich Wichmann; Inke R. König; Andreas Ziegler

Background Rare mutations of the low-density lipoprotein receptor gene (LDLR) cause familial hypercholesterolemia, which increases the risk for coronary artery disease (CAD). Less is known about the implications of common genetic variation in the LDLR gene regarding the variability of cholesterol levels and risk of CAD. Methods Imputed genotype data at the LDLR locus on 1 644 individuals of a population-based sample were explored for association with LDL-C level. Replication of association with LDL-C level was sought for the most significant single nucleotide polymorphism (SNP) within the LDLR gene in three European samples comprising 6 642 adults and 533 children. Association of this SNP with CAD was examined in six case-control studies involving more than 15 000 individuals. Findings Each copy of the minor T allele of SNP rs2228671 within LDLR (frequency 11%) was related to a decrease of LDL-C levels by 0.19 mmol/L (95% confidence interval (CI) [0.13–0.24] mmol/L, p = 1.5×10−10). This association with LDL-C was uniformly found in children, men, and women of all samples studied. In parallel, the T allele of rs2228671 was associated with a significantly lower risk of CAD (Odds Ratio per copy of the T allele: 0.82, 95% CI [0.76–0.89], p = 2.1×10−7). Adjustment for LDL-C levels by logistic regression or Mendelian Randomisation models abolished the significant association between rs2228671 with CAD completely, indicating a functional link between the genetic variant at the LDLR gene locus, change in LDL-C and risk of CAD. Conclusion A common variant at the LDLR gene locus affects LDL-C levels and, thereby, the risk for CAD.

Collaboration


Dive into the Anke Hinney's collaboration.

Top Co-Authors

Avatar

Johannes Hebebrand

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

André Scherag

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Reinehr

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Susann Friedel

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Anna-Lena Volckmar

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge