Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anke Scholz is active.

Publication


Featured researches published by Anke Scholz.


Journal of Molecular and Cellular Cardiology | 2012

Functional and morphological preservation of adult ventricular myocytes in culture by sub-micromolar cytochalasin D supplement

Qinghai Tian; Sara Pahlavan; Katharina Oleinikow; Jennifer Jung; Sandra Ruppenthal; Anke Scholz; Christian Schumann; Annette Kraegeloh; Martin Oberhofer; Peter Lipp; Lars Kaestner

In cardiac myocytes, cytochalasin D (CytoD) was reported to act as an actin disruptor and mechanical uncoupler. Using confocal and super-resolution STED microscopy, we show that CytoD preserves the actin filament architecture of adult rat ventricular myocytes in culture. Five hundred nanomolar CytoD was the optimal concentration to achieve both preservation of the T-tubular structure during culture periods of 3 days and conservation of major functional characteristics such as action potentials, calcium transients and, importantly, the contractile properties of single myocytes. Therefore, we conclude that the addition of CytoD to the culture of adult cardiac myocytes can indeed be used to generate a solid single-cell model that preserves both morphology and function of freshly isolated cells. Moreover, we reveal a putative link between cytoskeletal and T-tubular remodeling. In the absence of CytoD, we observed a loss of T-tubules that led to significant dyssynchronous Ca(2+)-induced Ca(2+) release (CICR), while in the presence of 0.5 μM CytoD, T-tubules and homogeneous CICR were majorly preserved. Such data suggested a possible link between the actin cytoskeleton, T-tubules and synchronous, reliable excitation-contraction-coupling. Thus, T-tubular re-organization in cell culture sheds some additional light onto similar processes found during many cardiac diseases and might link cytoskeletal alterations to changes in subcellular Ca(2+) signaling revealed under such pathophysiological conditions.


Journal of Visualized Experiments | 2009

Isolation and genetic manipulation of adult cardiac myocytes for confocal imaging.

Lars Kaestner; Anke Scholz; Karin Hammer; Anne Vecerdea; Sandra Ruppenthal; Peter Lipp

Cardiac myocytes isolated from adult hearts are widely accepted as a model somewhere half way between embryonic and neonatal muscle cells on one side and a working heart on the other. Thus, cardiomyocytes serve as good models for cardiac cellular physiology and pathophysiology, for pharmaceutical investigations as well as for the exploration of transgenic animal models. Here we describe a method of isolating the cells from the heart. Furthermore we show how a genetic manipulation on cardiac myocytes can be performed without breeding a transgenic animal: This is the combination of long term culture (1 week) and adenoviral gene transfer. The latter one is described from the construction of the virus to the transduction of the cells. It can be used for the expression of genetically encoded biosensors (GEBs), fluorescent fusion proteins, but also for protein over expression and down regulation, e.g. using RNAi. Here we provide an example for the expression of a fusion protein staining a subcellular structure (Golgi). Such protein expression can be visualized by confocal imaging of z-stacks for a 3D-reconstruction of subcellular structures. The protocol comprises state-of-the-art in cell culture, molecular biology and biophysics and thus provides an approach for exploring new horizons in cellular cardiology.


Circulation Research | 2014

Genetically Encoded Ca2+ Indicators in Cardiac Myocytes

Lars Kaestner; Anke Scholz; Qinghai Tian; Sandra Ruppenthal; Wiebke Tabellion; Kathrina Wiesen; Hugo A. Katus; Oliver Müller; Michael I. Kotlikoff; Peter Lipp

Genetically encoded Ca(2+) indicators constitute a powerful set of tools to investigate functional aspects of Ca(2+) signaling in isolated cardiomyocytes, cardiac tissue, and whole hearts. Here, we provide an overview of the concepts, experiences, state of the art, and ongoing developments in the use of genetically encoded Ca(2+) indicators for cardiac cells and heart tissue. This review is supplemented with in vivo viral gene transfer experiments and comparisons of available genetically encoded Ca(2+) indicators with each other and with the small molecule dye Fura-2. In the context of cardiac myocytes, we provide guidelines for selecting a genetically encoded Ca(2+) indicator. For future developments, we discuss improvements of a broad range of properties, including photophysical properties such as spectral spread and biocompatibility, as well as cellular and in vivo applications.


Bioorganic & Medicinal Chemistry Letters | 2015

Conceptual and technical aspects of transfection and gene delivery.

Lars Kaestner; Anke Scholz; Peter Lipp

Genetically modified animals are state of the art in biomedical research as gene therapy is a promising perspective in the attempt to cure hereditary diseases. Both approaches have in common that modified or corrected genetic information must be transferred into cells in general or into particular cell types of an organism. Here we give an overview of established and emerging methods of transfection and gene delivery and provide conceptual and technical advantages and drawbacks of their particular use. Additionally, based on a flow chart, we compiled a rough guideline to choose a gene transfer method for a particular field of application.


Journal of Biological Chemistry | 2012

Mutation of the calmodulin binding motif IQ of the L-type Ca(v)1.2 Ca2+ channel to EQ induces dilated cardiomyopathy and death.

Anne Blaich; Sara Pahlavan; Qinghai Tian; Martin Oberhofer; Montatip Poomvanicha; Peter Lenhardt; Katrin Domes; Joerg W. Wegener; Sven Moosmang; Sandra Ruppenthal; Anke Scholz; Peter Lipp; Franz Hofmann

Background: Mutation of the IQ motif to EQ abolished in vitro CDI and CDF of the Cav1.2 channel. Results: Cardiac-specific expression of Cav1.2EQ prevents CDI and CDF, reduces ICa, and induces dilated cardiomyopathy. Conclusion: The cardiac-specific EQ mutation leads to premature death. Significance: Survival depends on the expression of a native Cav1.2 protein. Cardiac excitation-contraction coupling (EC coupling) links the electrical excitation of the cell membrane to the mechanical contractile machinery of the heart. Calcium channels are major players of EC coupling and are regulated by voltage and Ca2+/calmodulin (CaM). CaM binds to the IQ motif located in the C terminus of the Cav1.2 channel and induces Ca2+-dependent inactivation (CDI) and facilitation (CDF). Mutation of Ile to Glu (Ile1624Glu) in the IQ motif abolished regulation of the channel by CDI and CDF. Here, we addressed the physiological consequences of such a mutation in the heart. Murine hearts expressing the Cav1.2I1624E mutation were generated in adult heterozygous mice through inactivation of the floxed WT Cav1.2L2 allele by tamoxifen-induced cardiac-specific activation of the MerCreMer Cre recombinase. Within 10 days after the first tamoxifen injection these mice developed dilated cardiomyopathy (DCM) accompanied by apoptosis of cardiac myocytes (CM) and fibrosis. In Cav1.2I1624E hearts, the activity of phospho-CaM kinase II and phospho-MAPK was increased. CMs expressed reduced levels of Cav1.2I1624E channel protein and ICa. The Cav1.2I1624E channel showed “CDI” kinetics. Despite a lower sarcoplasmic reticulum Ca2+ content, cellular contractility and global Ca2+ transients remained unchanged because the EC coupling gain was up-regulated by an increased neuroendocrine activity. Treatment of mice with metoprolol and captopril reduced DCM in Cav1.2I1624E hearts at day 10. We conclude that mutation of the IQ motif to IE leads to dilated cardiomyopathy and death.


Cellular Physiology and Biochemistry | 2011

Optical Action Potential Screening on Adult Ventricular Myocytes as an Alternative QT-screen

Qinghai Tian; Martin Oberhofer; Sandra Ruppenthal; Anke Scholz; Volker Buschmann; Hidekazu Tsutsui; Atsushi Miyawaki; André Zeug; Peter Lipp; Lars Kaestner

Background/Aims: QT-interval screens are increasingly important for cardiac safety on all new medications. So far, investigations rely on animal experiments or cell-based screens solely probing for conductance alterations in heterologously expressed hERG-channels in cell lines allowing for a high degree of automation. Adult cardiomyocytes can not be handled by automated patch-clamp setups. Therefore optical screening of primary isolated ventricular myocytes is regarded as an alternative. Several optical voltage sensors have been reported for ratiometric measurements, but they all influenced the naïve action potential. The aim of the present study was to explore the recording conditions and define settings that allow optical QT-interval screens. Methods: Based on an improved optical design, individual action potentials could be recorded with an exceptional signal-to-noise-ratio. The sensors were validated using the patch-clamp technique, confocal microscopy and fluorescence lifetime imaging in combination with global unmixing procedures. Results: We show that the small molecule dye di-8-ANEPPS and the novel genetically encoded sensor Mermaid provide quantitative action potential information. When applying such sensors we identified distinctly different pharmacological profiles of action potentials for adult and neonatal rat cardiomyocytes. Conclusion: Optical methods can be used for QT-interval investigations based on cellular action potentials using either the small molecule dye di-8-ANEPPS or the genetically encoded sensor Mermaid. Adult cardiomyocytes are superior to neonatal cardiomyocytes for such pharmacological investigations. Optical QT-screens may replace intricate animal experiments.


Cardiovascular Research | 2012

Gαq and Gα11 contribute to the maintenance of cellular electrophysiology and Ca2+ handling in ventricular cardiomyocytes

Sara Pahlavan; Martin Oberhofer; Benjamin Sauer; Sandra Ruppenthal; Qinghai Tian; Anke Scholz; Lars Kaestner; Peter Lipp

AIMS Gα(q) and Gα(11) signalling pathways contribute to cardiac diseases such as hypertrophy and arrhythmia, but their role in cardiac myocytes from healthy hearts has remained unclear. We aimed to investigate the contribution of Gα(q) and Gα(11) signalling to the basal properties of ventricular myocytes. METHODS AND RESULTS We created a conditional Gα(q) knockout (KO) after tamoxifen injection into gnaq(flox/flox) gna11(-/-) α-MHC Cre(tg/0) mice and found alterations in the electrophysiological and Ca(2+) handling properties of ventricular myocytes using patch-clamp and Fura-2 video imaging. To reveal the genuine effects of protein KO, we investigated the individual contributions of (i) tamoxifen injection, (ii) Cre recombinase expression, (iii) Gα(11) KO, and (iv) Gα(q) KO. Profound and persistent alterations in myocyte properties occurred following the tamoxifen injection alone. Consequently, we used the presence or absence of Cre recombinase expression as the determinant for the Gα(q) KO. Myocytes from the Gα(q) and/or Gα(11) KO mice displayed genuine alterations in the action potentials, membrane capacitance, membrane currents, and Ca(2+) handling (amplitude, post-rest behaviour, and Ca(2+) removal processes). CONCLUSIONS We conclude that, in a transgenic model, the role of Gα(q) can be best studied using Cre recombinase expression as the molecular determinant for Gα(q) KO rather than tamoxifen/miglyol injection. While excessive hormonal stimulation of the Gα(q)/Gα(11) signalling pathways plays an essential role in cardiac diseases, we propose that the persistent low-level stimulation of these pathways by Gα(q)/Gα(11) activation is instrumental in the physiological behaviour of ventricular myocytes.


European Conference on Biomedical Optics | 2009

Concepts for optical high content screens of excitable primary isolated cells for molecular imaging

Lars Kaestner; Sandra Ruppenthal; Sarah Schwarz; Anke Scholz; Peter Lipp

Here we describe the cell- and molecular-biological concepts to utilise excitable primary isolated cells, namely cardiomyocytes, for optical high content screens. This starts with an optimised culture of human adult cardiomyocytes, allowing culture with diminished dedifferentiation for one week. To allow fluorescence based molecular imaging genetically encoded biosensors need to be expressed in the cardiomyocytes. For transduction of end-differentiated primary cells such as neurons or cardiomyocytes, a viral gene transfer is necessary. Several viral systems were balanced against each other and an adenoviral system proofed to be efficient. This adenoviral transduction was used to express the calcium sensors YC3.6 and TN-XL in cardiomyocytes. Example measurements of calcium transients were performed by wide-field video imaging. We discuss the potential application of these cellular and molecular tools in basic research, cardiac safety screens and personalised diagnostics.


International Journal of Cardiology | 2016

Cardiac remodeling in Gαq and Gα11 knockout mice

Kathrina Wiesen; Elisabeth Kaiser; Laura Schröder; Anke Scholz; Sandra Ruppenthal; Jan-Christian Reil; Christina Backes; Eckart Meese; Carola Meier; Anna Bogdanova; Peter Lipp; Lars Kaestner

BACKGROUND Although both Gαq- and Gα11-protein signaling are believed to be involved in the regulation of cardiac hypertrophy, their detailed contribution to myocardial function remains elusive. METHODS AND RESULTS We studied remodeling processes in healthy transgenic mice with genetically altered Gαq/Gα11-expression, in particular a global Gα11-knockout and a novel inducible cardiac specific Gαq-knockout, as well as a combined double knockout (dKO) mouse line. Echocardiography and telemetric ECG recordings revealed that compared with wild type mice, hearts of dKO mice showed an increased ejection fraction and a decreased heart rate, irrespective of age resulting in a maintained cardiac output. We attributed these findings to the lack of Gα11, which the absence was associated with a decreased afterload. Histological analysis of the extracellular matrix in the heart depicted a diminished presence of collagen in aging hearts of dKO mice compared to wild-type mice. The results of a transcriptome analysis on isolated ventricular cardiac myocytes revealed alterations of the activity of genes involved in the Gαq/Gα11-dependent regulation of the extracellular matrix, such as the matricellular protein Cyr61. CONCLUSIONS From our data we conclude that Gαq/Gα11 signaling pathways play a pivotal role in maintaining gene activity patterns. For the heart we revealed their importance in modulating the properties of the extracellular matrix, a mechanism that might be an important contributor and mechanistic basis for the development of pressure-overload induced cardiac hypertrophy.


Cell Calcium | 2016

Endothelin-1-induced remodelling of murine adult ventricular myocytes.

Cedric Viero; Silke Wegener; Anke Scholz; Sandra Ruppenthal; Qinghai Tian; Wiebke Tabellion; Michael Kreinest; Matthias W. Laschke; Lars Kaestner; Peter Lipp

The precise role of hormones binding to Gαq protein-coupled receptors (H-GαqPCRs) in chronic heart diseases remains poorly understood. To address this, we used a model of cultured adult rat ventricular myocytes stimulated with endothelin-1 (ET-1) or phenylephrine (PE) over a period of 8 days in vitro (DIV). Chronically treated cells showed an increased number of arrhythmogenic Ca(2+) transients when electrically paced at 0.5 Hz. While their post-rest behaviour was preserved, from DIV6 onwards the amplitude of caffeine-evoked Ca(2+) transients was increased in hormone-treated cells, suggesting an elevated sarcoplasmic reticulum Ca(2+) load. The duration of electrically evoked global Ca(2+) transients gradually increased over the culturing time indicating decreased activity of processes removing cytosolic Ca(2+). In treated cells, spontaneous Ca(2+) sparks displayed smaller amplitudes from DIV6 onwards, and a slower decay period for PE (from DIV3) and for ET-1 (from DIV6). This cellular functional remodelling was associated with changes in gene expression: chronic ET-1 treatment decreased PKCγ transcripts, whereas PE increased PKCγ and SERCA2a transcripts as probed by qPCR. Western blot analysis confirmed the upregulation of PKCγ with PE. To study ET-1 receptor desensitization in vivo, osmotic minipumps containing either NaCl or ET-1 were implanted in mice and Ca(2+) signalling was studied in acutely isolated ventricular myocytes after 2 weeks of chronic treatment. Interestingly, while cellular responses to isoproterenol stimulation were preserved in ET-1 treated animals, the inotropic response of myocytes to ET-1 stimulation was abrogated. We therefore conclude that chronic stimulation of cardiac myocytes by H-GαqPCRs induces cellular remodelling of Ca(2+) cycling with altered PKCγ expression and promotion of arrhythmogenic cellular responses.

Collaboration


Dive into the Anke Scholz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge