Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anke Steppuhn is active.

Publication


Featured researches published by Anke Steppuhn.


PLOS Biology | 2004

Nicotine's Defensive Function in Nature

Anke Steppuhn; Klaus Gase; Bernd Krock; Rayko Halitschke; Ian T. Baldwin

Plants produce metabolites that directly decrease herbivore performance, and as a consequence, herbivores are selected for resistance to these metabolites. To determine whether these metabolites actually function as defenses requires measuring the performance of plants that are altered only in the production of a certain metabolite. To date, the defensive value of most plant resistance traits has not been demonstrated in nature. We transformed native tobacco(Nicotiana attenuata) with a consensus fragment of its two putrescine N-methyl transferase (pmt) genes in either antisense or inverted-repeat (IRpmt) orientations. Only the latter reduced (by greater than 95%) constitutive and inducible nicotine. With D4-nicotinic acid (NA), we demonstrate that silencing pmt inhibits nicotine production, while the excess NA dimerizes to form anatabine. Larvae of the nicotine-adapted herbivore Manduca sexta (tobacco hornworm) grew faster and, like the beetle Diabrotica undecimpunctata, preferred IRpmt plants in choice tests. When planted in their native habitat, IRpmt plants were attacked more frequently and, compared to wild-type plants, lost 3-fold more leaf area from a variety of native herbivores, of which the beet armyworm, Spodoptera exigua, and Trimerotropis spp. grasshoppers caused the most damage. These results provide strong evidence that nicotine functions as an efficient defense in nature and highlights the value of transgenic techniques for ecological research.


Molecular Ecology | 2004

Individual variability in herbivore-specific elicitors from the plant's perspective

Amy Roda; Rayko Halitschke; Anke Steppuhn; Ian T. Baldwin

Lepidopteran larvae oral secretions and regurgitant (R), which contain a plethora of potential elicitors, are known to dramatically change a plants wound response. We demonstrate, with a detailed microarray and secondary metabolite analysis, that the two most abundant fatty acid‐amino acid conjugates (FACs) in the R of the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) can account for all measured direct (trypsin proteinase inhibitor: TPI) and indirect (cis‐α‐bergamotene) defences, the endogenous jasmonic acid burst that elicits them, and 86% of the induced transcriptional changes (89% up and 83% down) in its native host Nicotiana attenuata and hence are necessary and sufficient for the Manduca‐specific modulation of the wound response. FACs were not found in eggs, but detected in larvae of all instars after their first meal. FACs were found in all regions of the alimentary canal and in the frass, but did not occur in salivary or mandibular glands, extracts of which were not active in any assay. Individual larvae differed substantially in their FAC composition and two FAC chemotypes were discernible: N‐linolenoyl‐L‐glutamine biased R and N‐linolenoyl‐L‐glutamate biased R. We created synthetic blends of FACs to mimic these chemical phenotypes and determined whether plants respond differently to the different R chemotypes. Micorarray and TPI analysis revealed that plants do not differentiate. N. attenuata plants use FACs from feeding caterpillars to tailor their wound responses but do not use the variability in FAC ratios to recognize attack from an individual caterpillar.


Biological Reviews | 2016

Priming and memory of stress responses in organisms lacking a nervous system.

Monika Hilker; Jens Schwachtje; Margarete Baier; Salma Balazadeh; Isabel Bäurle; Sven Geiselhardt; Dirk K. Hincha; Reinhard Kunze; Bernd Mueller-Roeber; Matthias C. Rillig; Jens Rolff; Tina Romeis; Thomas Schmülling; Anke Steppuhn; Joost T. van Dongen; Sarah J. Whitcomb; Susanne Wurst; Ellen Zuther; Joachim Kopka

Experience and memory of environmental stimuli that indicate future stress can prepare (prime) organismic stress responses even in species lacking a nervous system. The process through which such organisms prepare their phenotype for an improved response to future stress has been termed ‘priming’. However, other terms are also used for this phenomenon, especially when considering priming in different types of organisms and when referring to different stressors. Here we propose a conceptual framework for priming of stress responses in bacteria, fungi and plants which allows comparison of priming with other terms, e.g. adaptation, acclimation, induction, acquired resistance and cross protection. We address spatial and temporal aspects of priming and highlight current knowledge about the mechanisms necessary for information storage which range from epigenetic marks to the accumulation of (dormant) signalling molecules. Furthermore, we outline possible patterns of primed stress responses. Finally, we link the ability of organisms to become primed for stress responses (their ‘primability’) with evolutionary ecology aspects and discuss which properties of an organism and its environment may favour the evolution of priming of stress responses.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46’s role in a nicotine-mediated antipredator herbivore defense

Pavan Kumar; Sagar Subhash Pandit; Anke Steppuhn; Ian T. Baldwin

Significance When hornworm (Manduca sexta) larvae feed on Nicotiana attenuata plants in native habitats, more disappear at night when they feed on transgenic, nicotine-free N. attenuata plants because wolf spiders (Camptocosa parallela) selectively prey on nicotine-free larvae. When larvae consume nicotine-replete plants, their midgut-expressed cytochrome P450 6B46 (CYP6B46) is upregulated. The larvae in which CYP6B46 is silenced by plant-mediated RNAi excrete more of their ingested nicotine. Silencing CYP6B46 impairs the mechanisms of passing ingested nicotine from the midgut to the hemolymph to be exhaled from the spiracles during spider attack. Spiders are deterred by this nicotine-rich halitosis. Thus, the CYP6B46-silenced larvae exhale less nicotine and become ready spider prey, demonstrating that CYP6B46 functions to repurpose the normally excreted nicotine for defense. Manduca sexta (Ms) larvae are known to efficiently excrete ingested nicotine when feeding on their nicotine-producing native hostplant, Nicotiana attenuata. Here we describe how ingested nicotine is co-opted for larval defense by a unique mechanism. Plant-mediated RNAi was used to silence a midgut-expressed, nicotine-induced cytochrome P450 6B46 (CYP6B46) in larvae consuming transgenic N. attenuata plants producing MsCYP6B46 dsRNA. These and transgenic nicotine-deficient plants were planted into native habitats to study the phenotypes of larvae feeding on these plants and the behavior of their predators. The attack-behavior of a native wolf spider (Camptocosa parallela), a major nocturnal predator, provided the key to understanding MsCYP6B46’s function: spiders clearly preferred CYP6B46-silenced larvae, just as they had preferred larvae fed nicotine-deficient plants. MsCYP6B46 redirects a small amount (0.65%) of ingested nicotine from the midgut into hemolymph, from which nicotine is exhaled through the spiracles as an antispider signal. CYP6B46-silenced larvae were more susceptible to spider-attack because they exhaled less nicotine because of lower hemolymph nicotine concentrations. CYP6B46-silenced larvae were impaired in distributing ingested nicotine from midgut to hemolymph, but not in the clearing of hemolymph nicotine or in the exhalation of nicotine from hemolymph. MsCYP6B46 could be a component of a previously hypothesized pump that converts nicotine to a short-lived, transportable, metabolite. Other predators, big-eyed bugs, and antlion larvae were insensitive to this defense. Thus, chemical defenses, too toxic to sequester, can be repurposed for defensive functions through respiration as a form of defensive halitosis, and predators can assist the functional elucidation of herbivore genes.


Molecular Ecology | 2008

Silencing jasmonate signalling and jasmonate-mediated defenses reveals different survival strategies between two Nicotiana attenuata accessions

Anke Steppuhn; Meredith C. Schuman; Ian T. Baldwin

To determine the impact of genotypic variation in secondary metabolite production on antiherbivore resistance and plant fitness, we genetically silenced biosynthetic genes for nicotine, trypsin proteinase inhibitors (TPI), and jasmonate (JA) production in two accessions of Nicotiana attenuata: one from Utah (UT) which responds to herbivory with JA‐induced nicotine and TPI production, and one from Arizona (AZ) which is TPI‐deficient but also produces JA‐induced nicotine. Transient silencing of JA biosynthesis increased Manduca sexta larval growth on wild type (WT) plants of both accessions, but not on TPI‐deficient UT or nicotine‐deficient AZ lines, demonstrating that JA‐mediated resistance to M. sexta requires TPIs in the UT and nicotine in the naturally TPI‐deficient AZ accession. When transplanted into a native UT population, AZ and UT plants, rendered equally able or unable to produce nicotine and TPIs by stable transformation, received significantly different levels of herbivory. Both accessions differed in their resistance depending on the type of herbivores: resistance to rare, voracious herbivores (Saltatoria and Mammalia) was greater in AZ than UT lines, and dependent on nicotine production, while resistance to small, abundant herbivores (Coleoptera and Thysanoptera) was greater in UT lines, and dependent on TPI production. AZ lines produced more flowers and seed capsules than UT lines independently of TPI production costs. This fitness advantage was lost when accessions did not produce nicotine. We conclude that these two accessions have developed different survival strategies and thus differ in the cost‐benefit functions of their JA‐mediated defences.


Journal of Chemical Ecology | 2003

Specific Foraging Kairomones Used by a Generalist Parasitoid

Johannes L. M. Steidle; Anke Steppuhn; Joachim Ruther

In general, it is assumed that generalist natural enemies do not innately use specific cues for the location of their host or prey species. This hypothesis was tested using naïve females of the generalist parasitoid Lariophagus distinguendus Förster and two of its hosts, larvae of the lesser grain borer Rhyzopertha dominica (F.) and of the granary weevil Sitophilus granarius L., feeding in wheat grains. In a four-chamber olfactometer, female parasitoids were attracted to volatiles emanating from the feces of both host species. Chemical analysis of the volatiles from the feces of R. dominica revealed the presence of dominicalure 1 and 2, the species specific aggregation pheromones of R. dominica. The main compounds in the volatiles from feces of S. granarius were identified as chemicals related to mites that are associated with hosts of L. distinguendus. Because these mites are not specific for S. granarius but also co-occur with other hosts, the mite chemicals have to be considered as general cues. In bioassays, synthetic dominicalure was attractive to naïve L. distinguendus, explaining the attraction of feces volatiles from R. dominica. Synthetic mite chemicals and sitophilate, the aggregation pheromone of S. granarius, had no effect on naïve parasitoids. It remains to be determined which innate chemical cues from feces of S. granarius are used by L. distinguendus. In contrast to our initial hypothesis, the generalist L. distinguendus is innately using specific cues for foraging. Two ideas are provided to explain this result.


Basic and Applied Ecology | 2001

Volatile cues from different host complexes used for host location by the generalist parasitoid Lariophagus distinguendus (Hymenoptera: Pteromalidae)

Johannes L. M. Steidle; Anke Steppuhn; Judith Reinhard

The ability of a generalist parasitoid to locate different non-related host species by volatile cues was examined in a static four chamber olfactometer with naive females of Lariophagus distinguendus Forster (Pteromalidae), a parasitoid of beetle larvae endophytic in seeds. The following seed-host complexes were tested: Sitophilus granarius in rice grains, Rhyzopertha dominica in wheat grains, and Callosobruchus maculatus in cowpeas. For comparison the non-host Sitotroga cerealella, a moth endophytic in wheat grains, was used. Healthy seeds from rice, wheat, and cowpea all had an arresting effect on L. distinguendus. Infested seeds from the complexes rice-S. granarius and wheat-R. dominica were significantly preferred over healthy seeds, but not from the complexes cowpea-C. maculatus and wheat-S. cerealella. Faeces from all beetle hosts, but not from the moth S. cerealella, had an arresting effect. These results indicate that L. distinguendus females innately react to volatile cues from different hosts and host plants. This is discussed with respect to current hypotheses on the use of chemical cues by generalist parasitoids.


Plant Journal | 2015

Oviposition by Spodoptera exigua on Nicotiana attenuata primes induced plant defence against larval herbivory

Michele Bandoly; Monika Hilker; Anke Steppuhn

Plants exhibit multifarious defence traits against herbivory that are constitutively expressed or induced upon attack. Insect egg deposition often precedes impending larval attack, and several plants can increase their resistance against larvae after experiencing the oviposition by an herbivore. The nature of such oviposition-mediated resistance remains unknown, and here we aim to determine plant traits that explain it. We test whether oviposition on a host plant can induce plant defence responses or enhance (prime) the induction of defence traits in response to larval herbivory. We exposed Nicotiana attenuata plants to oviposition by moths of a generalist herbivore, Spodoptera exigua. Its larvae suffered higher mortality, retarded development and inflicted less feeding damage on oviposition-experienced than on oviposition-unexperienced plants. While oviposition alone did not induce any of the examined defence traits, oviposited plants exhibited a stronger inducibility of known defence traits, i.e. caffeoylputrescine (CP) and trypsin protease inhibitors (TPIs). We found no effects of oviposition on phytohormone levels, but on the feeding-inducible accumulation of the transcription factor NaMyb8 that is governing biosynthesis of phenylpropanoid-polyamine conjugates, including CP. Comparison of larval performance on wild-type plants, CP-deficient plants (silenced NaMyb8 gene), and TPI-deficient plants (silenced NaPI gene) revealed that priming of plant resistance to larvae by prior oviposition required NaMyb8-mediated defence traits. Our results show that plants can use insect egg deposition as a warning signal to prime their feeding-induced defence.


PLOS ONE | 2015

Beyond Predation: The Zoophytophagous Predator Macrolophus pygmaeus Induces Tomato Resistance against Spider Mites

Maria L. Pappas; Anke Steppuhn; Daniel Geuss; Nikoleta Topalidou; Aliki Zografou; Maurice W. Sabelis; George D. Broufas

Many predatory insects that prey on herbivores also feed on the plant, but it is unknown whether plants affect the performance of herbivores by responding to this phytophagy with defence induction. We investigate whether the prior presence of the omnivorous predator Macrolophus pygmaeus (Rambur) on tomato plants affects plant resistance against two different herbivore species. Besides plant-mediated effects of M. pygmaeus on herbivore performance, we examined whether a plant defence trait that is known to be inducible by herbivory, proteinase inhibitors (PI), may also be activated in response to the interactions of this predator with the tomato plant. We show that exposing tomato plants to the omnivorous predator M. pygmaeus reduced performance of a subsequently infesting herbivore, the two-spotted spider mite Tetranychus urticae Koch, but not of the greenhouse whitefly Trialeurodes vaporariorum (Westwood). The spider-mite infested tomato plants experience a lower herbivore load, i.e., number of eggs deposited and individuals present, when previously exposed to the zoophytophagous predator. This effect is not restricted to the exposed leaf and persists on exposed plants for at least two weeks after the removal of the predators. The decreased performance of spider mites as a result of prior exposure of the plant to M. pygmaeus is accompanied by a locally and systemically increased accumulation of transcripts and activity of proteinase inhibitors that are known to be involved in plant defence. Our results demonstrate that zoophytophagous predators can induce plant defence responses and reduce herbivore performance. Hence, the suppression of populations of certain herbivores via consumption may be strengthened by the induction of plant defences by zoophytophagous predators.


BMC Plant Biology | 2010

The two α-dox genes of Nicotiana attenuata: overlapping but distinct functions in development and stress responses

Anke Steppuhn; Emmanuel Gaquerel; Ian T. Baldwin

BackgroundPlant fatty acid α-dioxygenases (α-DOX) are oxylipin-forming enzymes induced by biotic and abiotic stresses, which also participate in developmental processes. In Nicotiana attenuata, herbivory strongly induces the expression of an α-dox1 gene. To determine its role, we silenced its expression using Agrobacterium-mediated plant transformation with an inverted repeat construct. More than half of the transformed lines showed a severe dwarf growth phenotype that was very similar to the phenotype of tomato plants mutated at a second α-dox isoform. This led us to identify the corresponding α-dox2 gene in N. attenuata and examine the regulation of both α-dox genes as well as the consequences of their silencing in plant development and anti-herbivore defense.ResultsThe transformed lines exhibiting a dwarf growth phenotype are co-silenced for both α-dox genes resulting in a nearly complete suppression of α-DOX activity, which is associated with increases in ABA, JA and anthocyanin levels, all metabolic signatures of oxidative stress. The other lines, only silenced for α-dox1, developed similarly to wild-type plants, exhibited a 40% reduction of α-DOX activity resulting in a 50% reduction of its main product in planta (2-HOT) and showed no signs of oxidative stress. In contrast to α-dox1, the expression of α-dox2 gene is not induced by wounding or elicitors in the oral secretions of Manduca sexta. Instead, α-dox2 is expressed in roots and flowers which lack α-dox1 expression, but both genes are equally regulated during leaf maturation. We transiently silenced α-dox gene copies with gene-specific constructs using virus induced gene silencing and determined the consequences for plant development and phytohormone and 2-HOT levels. While individual silencing of α-dox1 or α-dox2 had no effects on plant growth, the co-suppression of both α-dox genes decreased plant growth. Plants transiently silenced for both α-dox genes had increased constitutive levels of JA and ABA but silencing α-dox1 alone resulted in lower M. sexta-induced levels of JA, 2-HOT and ABA.ConclusionsThus, both α-dox isoforms function in the development of N. attenuata. In leaf maturation, the two α-dox genes have overlapping functions, but only α-dox2 is involved in root and flower development and only α-dox1 functions in anti-herbivore defense.

Collaboration


Dive into the Anke Steppuhn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tobias Lortzing

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Michele Bandoly

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Monika Hilker

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Sandra Stelzer

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George D. Broufas

Democritus University of Thrace

View shared research outputs
Top Co-Authors

Avatar

Maria L. Pappas

Democritus University of Thrace

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Geuss

Free University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge