Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anke Treuner-Lange is active.

Publication


Featured researches published by Anke Treuner-Lange.


Nature Biotechnology | 2007

Complete genome sequence of the myxobacterium Sorangium cellulosum.

Susanne Schneiker; Olena Perlova; Olaf Kaiser; Klaus Gerth; Aysel Alici; Matthias O. Altmeyer; Daniela Bartels; Thomas Bekel; Stefan Beyer; Edna Bode; Helge B. Bode; Christoph J. Bolten; Jomuna V. Choudhuri; Sabrina Doss; Yasser A. Elnakady; Bettina Frank; Lars Gaigalat; Alexander Goesmann; Carolin Groeger; Frank Gross; Lars Jelsbak; Lotte Jelsbak; Jörn Kalinowski; Carsten Kegler; Tina Knauber; Sebastian Konietzny; Maren Kopp; Lutz Krause; Daniel Krug; Bukhard Linke

The genus Sorangium synthesizes approximately half of the secondary metabolites isolated from myxobacteria, including the anti-cancer metabolite epothilone. We report the complete genome sequence of the model Sorangium strain S. cellulosum So ce56, which produces several natural products and has morphological and physiological properties typical of the genus. The circular genome, comprising 13,033,779 base pairs, is the largest bacterial genome sequenced to date. No global synteny with the genome of Myxococcus xanthus is apparent, revealing an unanticipated level of divergence between these myxobacteria. A large percentage of the genome is devoted to regulation, particularly post-translational phosphorylation, which probably supports the strains complex, social lifestyle. This regulatory network includes the highest number of eukaryotic protein kinase–like kinases discovered in any organism. Seventeen secondary metabolite loci are encoded in the genome, as well as many enzymes with potential utility in industry.


Science | 2016

Architecture of the type IVa pilus machine

Yi Wei Chang; Lee A. Rettberg; Anke Treuner-Lange; Janet Iwasa; Lotte Søgaard-Andersen; Grant J. Jensen

How the bacterial pilus works Many bacteria, including important pathogens, move by projecting grappling-hook–like extensions called type IV pili from their cell bodies. After these pili attach to other cells or objects in their environment, the bacteria retract the pili to pull themselves forward. Chang et al. used electron cryotomography of intact cells to image the protein machines that extend and retract the pili, revealing where each protein component resides. Putting the known structures of the individual proteins in place like pieces of a three-dimensional puzzle revealed insights into how the machine works, including evidence that ATP hydrolysis by cytoplasmic motors rotates a membrane-embedded adaptor that slips pilin subunits back and forth from the membrane onto the pilus. Science, this issue p. 10.1126/science.aad2001 Structural models show how bacteria switch from pilus extension to retraction. INTRODUCTION Type IVa pili are bacterial cell surface structures that perform critical functions in motility, surface adhesion, virulence, and biofilm formation. Type IVa pili are anchored in the cell envelope and pull cells forward through cycles of extension, adhesion to surfaces, and retraction, all powered by the type IVa pilus machine (T4PM). Although the structures and connectivities of the 10 core T4PM proteins and minor pilins have already been determined, the overall architecture of the T4PM and its extension and retraction mechanisms have not. RATIONALE To elucidate the architecture of the intact T4PM, we directly imaged T4PMs within intact Myxococcus xanthus cells by cryo–electron tomography. Mutants that either lacked T4PM components or contained individual T4PM proteins fused to a tag were then imaged. Difference maps revealed the locations of all components of the T4PM machine. Hypothetical models were then built by fitting the known atomic structures of the components together in their relative positions. RESULTS Both piliated and nonpiliated T4PMs are multilayered structures that span the entire cell envelope. T4PMs include an outer membrane pore, three interconnected periplasmic ring structures and another in the cytoplasm, a cytoplasmic disc and dome, and a periplasmic stem. The PilQ secretin forms the outer membrane pore; TsaP forms a periplasmic ring around PilQ; periplasmic domains of PilQ together with PilP constitute the mid-periplasmic ring; and the globular domains of PilO and PilN constitute the lower periplasmic ring and connect via coiled coils across the inner membrane to PilM, which forms the cytoplasmic ring. The cytoplasmic domains of the inner membrane protein PilC form the cytoplasmic dome on the T4PM axis inside the PilM ring. The short stem in the nonpiliated state is composed of minor pilins and PilA, the major subunit of the pilus. In the piliated state, the pilus extends from the cell exterior through the PilQ pore and the periplasmic rings to PilC in the inner membrane. In the piliated structure, the hexameric adenosine triphosphatases (ATPases) PilB and PilT bind in a mutually exclusive manner to the base of the T4PM, where they appear as the cytoplasmic disc during extensions and retractions, respectively. Next, we asked whether the known atomic structures of the proteins could be fit within the map where our imaging results indicated, while still satisfying all known constraints of size, connectivities, and interfaces. This successful effort resulted in “pseudo-atomic” working models of both states of the T4PM. The models suggest that through ATP hydrolysis, PilB rotates PilC, incrementally moving it into positions that facilitate incorporation of new PilA subunits one by one from the inner membrane onto the base of the growing helical pilus. Pilus retraction is driven by replacement of PilB with PilT, which rotates PilC into positions that promote PilA departure from the base of the pilus back into the membrane. CONCLUSION We determined the architecture of the T4PM in the piliated and nonpiliated states and mapped all known components onto this architecture, producing a complete structural map of the T4PM. The results illustrate how the structure and function of macromolecular complexes that defy purification and traditional structural approaches can nonetheless be interrogated through cryo–electron tomography of intact cells and model building. Bacterial type IVa pilus machine (T4PM). Two T4PMs are depicted on the left, spanning the envelope of a Gram-negative bacterial cell. T4PMs extend and retract pili to pull cells forward. The structural data presented here support the hypothesis that ATP hydrolysis in the cytoplasm causes an adapter protein in the inner membrane to rotate, facilitating the transfer of pilin subunits from the inner membrane onto the growing pilus. The process is reversed during retraction. Type IVa pili are filamentous cell surface structures observed in many bacteria. They pull cells forward by extending, adhering to surfaces, and then retracting. We used cryo–electron tomography of intact Myxococcus xanthus cells to visualize type IVa pili and the protein machine that assembles and retracts them (the type IVa pilus machine, or T4PM) in situ, in both the piliated and nonpiliated states, at a resolution of 3 to 4 nanometers. We found that T4PM comprises an outer membrane pore, four interconnected ring structures in the periplasm and cytoplasm, a cytoplasmic disc and dome, and a periplasmic stem. By systematically imaging mutants lacking defined T4PM proteins or with individual proteins fused to tags, we mapped the locations of all 10 T4PM core components and the minor pilins, thereby providing insights into pilus assembly, structure, and function.


Nature Methods | 2014

Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography

Yi-Wei Chang; Songye Chen; Elitza I. Tocheva; Anke Treuner-Lange; Stephanie Löbach; Lotte Søgaard-Andersen; Grant J. Jensen

Cryo-electron tomography (CET) produces three-dimensional images of cells in a near-native state at macromolecular resolution, but identifying structures of interest can be challenging. Here we describe a correlated cryo-PALM (photoactivated localization microscopy)-CET method for localizing objects within cryo-tomograms to beyond the diffraction limit of the light microscope. Using cryo-PALM-CET, we identified multiple and new conformations of the dynamic type VI secretion system in the crowded interior of Myxococcus xanthus.


Molecular Biology and Evolution | 2011

Comparative Genomic Analysis of Fruiting Body Formation in Myxococcales

Stuart Huntley; Nils Hamann; Sigrun Wegener-Feldbrügge; Anke Treuner-Lange; Michael Kube; Richard Reinhardt; Sven Klages; Rolf Müller; Catherine M. Ronning; William C. Nierman; Lotte Søgaard-Andersen

Genetic programs underlying multicellular morphogenesis and cellular differentiation are most often associated with eukaryotic organisms, but examples also exist in bacteria such as the formation of multicellular, spore-filled fruiting bodies in the order Myxococcales. Most members of the Myxococcales undergo a multicellular developmental program culminating in the formation of spore-filled fruiting bodies in response to starvation. To gain insight into the evolutionary history of fruiting body formation in Myxococcales, we performed a comparative analysis of the genomes and transcriptomes of five Myxococcales species, four of these undergo fruiting body formation (Myxococcus xanthus, Stigmatella aurantiaca, Sorangium cellulosum, and Haliangium ochraceum) and one does not (Anaeromyxobacter dehalogenans). Our analyses show that a set of 95 known M. xanthus development-specific genes--although suffering from a sampling bias--are overrepresented and occur more frequently than an average M. xanthus gene in S. aurantiaca, whereas they occur at the same frequency as an average M. xanthus gene in S. cellulosum and in H. ochraceum and are underrepresented in A. dehalogenans. Moreover, genes for entire signal transduction pathways important for fruiting body formation in M. xanthus are conserved in S. aurantiaca, whereas only a minority of these genes are conserved in A. dehalogenans, S. cellulosum, and H. ochraceum. Likewise, global gene expression profiling of developmentally regulated genes showed that genes that upregulated during development in M. xanthus are overrepresented in S. aurantiaca and slightly underrepresented in A. dehalogenans, S. cellulosum, and H. ochraceum. These comparative analyses strongly indicate that the genetic programs for fruiting body formation in M. xanthus and S. aurantiaca are highly similar and significantly different from the genetic program directing fruiting body formation in S. cellulosum and H. ochraceum. Thus, our analyses reveal an unexpected level of plasticity in the genetic programs for fruiting body formation in the Myxococcales and strongly suggest that the genetic program underlying fruiting body formation in different Myxococcales is not conserved. The evolutionary implications of this finding are discussed.


Molecular Microbiology | 2013

PomZ, a ParA-like protein, regulates Z-ring formation and cell division in Myxococcus xanthus.

Anke Treuner-Lange; Kryssia Aguiluz; Chris van der Does; Nuria Gómez-Santos; Andrea Harms; Dominik Schumacher; Peter Lenz; Michael Hoppert; Jörg Kahnt; José Muñoz-Dorado; Lotte Søgaard-Andersen

Accurate positioning of the division site is essential to generate appropriately sized daughter cells with the correct chromosome number. In bacteria, division generally depends on assembly of the tubulin homologue FtsZ into the Z‐ring at the division site. Here, we show that lack of the ParA‐like protein PomZ in Myxococcus xanthus resulted in division defects with the formation of chromosome‐free minicells and filamentous cells. Lack of PomZ also caused reduced formation of Z‐rings and incorrect positioning of the few Z‐rings formed. PomZ localization is cell cycle regulated, and PomZ accumulates at the division site at midcell after chromosome segregation but prior to FtsZ as well as in the absence of FtsZ. FtsZ displayed cooperative GTP hydrolysis in vitro but did not form detectable filaments in vitro. PomZ interacted with FtsZ in M. xanthus cell extracts. These data show that PomZ is important for Z‐ring formation and is a spatial regulator of Z‐ring formation and cell division. The cell cycle‐dependent localization of PomZ at midcell provides a mechanism for coupling cell cycle progression and Z‐ring formation. Moreover, the data suggest that PomZ is part of a system that recruits FtsZ to midcell, thereby, restricting Z‐ring formation to this position.


Journal of Proteome Research | 2010

Profiling the Outer Membrane Proteome during Growth and Development of the Social Bacterium Myxococcus xanthus by Selective Biotinylation and Analyses of Outer Membrane Vesicles

Jörg Kahnt; Kryssia Aguiluz; Jürgen Koch; Anke Treuner-Lange; Anna Konovalova; Stuart Huntley; Michael Hoppert; Lotte Søgaard-Andersen; Reiner Hedderich

Social behavior in the bacterium Myxococcus xanthus relies on contact-dependent activities involving cell-cell and cell-substratum interactions. To identify outer membrane proteins that have a role in these activities, we profiled the outer membrane proteome of growing and starving cells using two strategies. First, outer membrane proteins were enriched by biotinylation of intact cells using the reagent NHS (N-hydroxysuccinimide)-PEO(12) (polyethylene oxide)-biotin with subsequent membrane solubilization and affinity chromatography. Second, the proteome of outer membrane vesicles (OMV) was determined. Comparisons of detected proteins show that these methods have different detection profiles and together provide a comprehensive view of the outer membrane proteome. From 362 proteins identified, 274 (76%) were cell envelope proteins including 64 integral outer membrane proteins and 85 lipoproteins. The majority of these proteins were of unknown function. Among integral outer membrane proteins with homologues of known function, TonB-dependent transporters comprise the largest group. Our data suggest novel functions for these transporters. Among lipoproteins with homologues of known function, proteins with hydrolytic functions comprise the largest group. The luminal load of OMV was enriched for proteins with hydrolytic functions. Our data suggest that OMV have functions in predation and possibly in transfer of intercellular signaling molecules between cells.


Journal of Cell Biology | 2014

Regulation of cell polarity in bacteria

Anke Treuner-Lange; Lotte Søgaard-Andersen

Bacteria are polarized cells with many asymmetrically localized proteins that are regulated temporally and spatially. This spatiotemporal dynamics is critical for several fundamental cellular processes including growth, division, cell cycle regulation, chromosome segregation, differentiation, and motility. Therefore, understanding how proteins find their correct location at the right time is crucial for elucidating bacterial cell function. Despite the diversity of proteins displaying spatiotemporal dynamics, general principles for the dynamic regulation of protein localization to the cell poles and the midcell are emerging. These principles include diffusion-capture, self-assembling polymer-forming landmark proteins, nonpolymer forming landmark proteins, matrix-dependent self-organizing ParA/MinD ATPases, and small Ras-like GTPases.


BMC Genomics | 2010

Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation.

Frank Müller; Anke Treuner-Lange; Johann Heider; Stuart Huntley; Penelope I. Higgs

BackgroundMyxococcus xanthus is a Gram negative bacterium that can differentiate into metabolically quiescent, environmentally resistant spores. Little is known about the mechanisms involved in differentiation in part because sporulation is normally initiated at the culmination of a complex starvation-induced developmental program and only inside multicellular fruiting bodies. To obtain a broad overview of the sporulation process and to identify novel genes necessary for differentiation, we instead performed global transcriptome analysis of an artificial chemically-induced sporulation process in which addition of glycerol to vegetatively growing liquid cultures of M. xanthus leads to rapid and synchronized differentiation of nearly all cells into myxospore-like entities.ResultsOur analyses identified 1 486 genes whose expression was significantly regulated at least two-fold within four hours of chemical-induced differentiation. Most of the previously identified sporulation marker genes were significantly upregulated. In contrast, most genes that are required to build starvation-induced multicellular fruiting bodies, but which are not required for sporulation per se, were not significantly regulated in our analysis. Analysis of functional gene categories significantly over-represented in the regulated genes, suggested large rearrangements in core metabolic pathways, and in genes involved in protein synthesis and fate. We used the microarray data to identify a novel operon of eight genes that, when mutated, rendered cells unable to produce viable chemical- or starvation-induced spores. Importantly, these mutants displayed no defects in building fruiting bodies, suggesting these genes are necessary for the core sporulation process. Furthermore, during the starvation-induced developmental program, these genes were expressed in fruiting bodies but not in peripheral rods, a subpopulation of developing cells which do not sporulate.ConclusionsThese results suggest that microarray analysis of chemical-induced spore formation is an excellent system to specifically identify genes necessary for the core sporulation process of a Gram negative model organism for differentiation.


PLOS Genetics | 2013

Tracking of Chromosome and Replisome Dynamics in Myxococcus xanthus Reveals a Novel Chromosome Arrangement

Andrea Harms; Anke Treuner-Lange; Dominik Schumacher; Lotte Søgaard-Andersen

Cells closely coordinate cell division with chromosome replication and segregation; however, the mechanisms responsible for this coordination still remain largely unknown. Here, we analyzed the spatial arrangement and temporal dynamics of the 9.1 Mb circular chromosome in the rod-shaped cells of Myxococcus xanthus. For chromosome segregation, M. xanthus uses a parABS system, which is essential, and lack of ParB results in chromosome segregation defects as well as cell divisions over nucleoids and the formation of anucleate cells. From the determination of the dynamic subcellular location of six genetic loci, we conclude that in newborn cells ori, as monitored following the ParB/parS complex, and ter regions are localized in the subpolar regions of the old and new cell pole, respectively and each separated from the nearest pole by approximately 1 µm. The bulk of the chromosome is arranged between the two subpolar regions, thus leaving the two large subpolar regions devoid of DNA. Upon replication, one ori region remains in the original subpolar region while the second copy segregates unidirectionally to the opposite subpolar region followed by the rest of the chromosome. In parallel, the ter region of the mother chromosome relocates, most likely passively, to midcell, where it is replicated. Consequently, after completion of replication and segregation, the two chromosomes show an ori-ter-ter-ori arrangement with mirror symmetry about a transverse axis at midcell. Upon completion of segregation of the ParB/parS complex, ParA localizes in large patches in the DNA-free subpolar regions. Using an Ssb-YFP fusion as a proxy for replisome localization, we observed that the two replisomes track independently of each other from a subpolar region towards ter. We conclude that M. xanthus chromosome arrangement and dynamics combine features from previously described systems with new features leading to a novel spatiotemporal arrangement pattern.


Journal of Bacteriology | 2012

Complete Genome Sequence of the Fruiting Myxobacterium Corallococcus coralloides DSM 2259

Stuart Huntley; Ye Zhang; Anke Treuner-Lange; Susanne Kneip; Christoph W. Sensen; Lotte Søgaard-Andersen

Corallococcus coralloides, like most other myxobacteria, undergoes a developmental program culminating in the formation of fruiting bodies. C. coralloides fruiting bodies are morphologically distinct from those of other fruiting myxobacteria for which full-length genome sequences are available. The genome sequence of the 10.0-Mb C. coralloides genome is presented herein.

Collaboration


Dive into the Anke Treuner-Lange's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Grant J. Jensen

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge