Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ankie Poutsma is active.

Publication


Featured researches published by Ankie Poutsma.


Nature Genetics | 2005

Maternal segregation of the Dutch preeclampsia locus at 10q22 with a new member of the winged helix gene family.

Marie van Dijk; Joyce Mulders; Ankie Poutsma; Andrea A.M. Könst; Augusta M. A. Lachmeijer; Gustaaf A. Dekker; Marinus A. Blankenstein; Cees B.M. Oudejans

Preeclampsia is a pregnancy-associated disease with maternal symptoms but placental origin. Epigenetic inheritance is involved in some populations. By sequence analysis of 17 genes in the 10q22 region with maternal effects, we narrowed the minimal critical region linked with preeclampsia in the Netherlands to 444 kb. All but one gene in this region, which lies within a female-specific recombination hotspot, encode DNA- or RNA-binding proteins. One gene, STOX1 (also called C10orf24), contained five different missense mutations, identical between affected sisters, cosegregating with the preeclamptic phenotype and following matrilineal inheritance. Four STOX1 transcripts are expressed in early placenta, including invasive extravillus trophoblast, generating three different isoforms. All contain a winged helix domain related to the forkhead (FOX) family. The largest STOX1 isoform has exclusive nuclear or cytoplasmic expression, indicating activation and inactivation, respectively, of the PI3K-Akt-FOX pathway. Because all 38 FOX proteins and all 8 STOX1 homologs have either tyrosine or phenylalanine at position 153, the predominant Y153H variation is highly mutagenic by conservation criteria but subject to incomplete penetrance. STOX1 is a candidate for preeclampsia controlling polyploidization of extravillus trophoblast.


Journal of Clinical Investigation | 2012

HELLP babies link a novel lincRNA to the trophoblast cell cycle

Marie van Dijk; Hari K. Thulluru; Joyce Mulders; Omar Michel; Ankie Poutsma; Sandra Windhorst; Gunilla Kleiverda; Daoud Sie; Augusta M. A. Lachmeijer; Cees B.M. Oudejans

The HELLP syndrome is a pregnancy-associated disease inducing hemolysis, elevated liver enzymes, and low platelets in the mother. Although the HELLP symptoms occur in the third trimester in the mother, the origin of the disease can be found in the first trimester fetal placenta. A locus for the HELLP syndrome is present on chromosome 12q23 near PAH. Here, by multipoint nonparametric linkage, pedigree structure allele sharing, and haplotype association analysis of affected sisters and cousins, we demonstrate that the HELLP locus is in an intergenic region on 12q23.2 between PMCH and IGF1. We identified a novel long intergenic noncoding RNA (lincRNA) transcript of 205,012 bases with (peri)nuclear expression in the extravillous trophoblast using strand-specific RT-PCR complemented with RACE and FISH. siRNA-mediated knockdown followed by RNA-sequencing, revealed that the HELLP lincRNA activated a large set of genes that are involved in the cell cycle. Furthermore, blocking potential mutation sites identified in HELLP families decreased the invasion capacity of extravillous trophoblasts. This is the first large noncoding gene to be linked to a Mendelian disorder with autosomal-recessive inheritance.


Journal of Alzheimer's Disease | 2010

The Pre-Eclampsia Gene STOX1 Controls a Conserved Pathway in Placenta and Brain Upregulated in Late-Onset Alzheimer's Disease

Marie van Dijk; Jan van Bezu; Ankie Poutsma; Robert Veerhuis; Annemieke Rozemuller; Wiep Scheper; Marinus A. Blankenstein; Cees B.M. Oudejans

Pre-eclampsia and late-onset Alzheimers disease (LOAD) share no clinical features. In contrast to these clinical dissimilarities, striking parallels exist between the (epi)genetic features associated with pre-eclampsia and LOAD for the genes located on 10q22. The parallels in identity between the 10q22 genes involved and active in the organs (placenta, brain) primarily affected in the respective diseases led us to explore, if the pre-eclampsia susceptibility gene STOX1 is functionally involved in LOAD. We demonstrate that isoform A of STOX1 is abundantly expressed in the brain, correlates with severity of disease, and selectively transactivates LRRTM3 in neural cells with increased amyloid-beta protein precursor processing. Similar in vitro results were seen in trophoblast. Our data indicate that STOX1 controls a conserved pathway shared between placenta and brain with overexpression in LOAD.


Mechanisms of Development | 2002

The proneural genes NEUROD1 and NEUROD2 are expressed during human trophoblast invasion

Bart A. Westerman; Ankie Poutsma; Kei Maruyama; Henry F.J Schrijnemakers; Inge J. van Wijk; Cees B.M. Oudejans

During early human pregnancy, extravillous trophoblast cells invade the maternal tissue of the uterus in a way similar to invasion by cancer cells. However, the process of trophoblast invasion is regulated in a time and place restricted way, in contrast to cancer invasion. We screened first trimester placental tissue enriched by extravillous invasive trophoblasts for the expression of proneural basic helix-loop-helix (bHLH) transcription factors, which are important controllers of cell fate. Surprisingly, the presence of NEUROD1, NEUROD2 and ATH2 transcripts was found by reverse transcriptase polymerase chain reaction (RT-PCR) analysis in first trimester placentabed. Of these genes, the proneural genes NEUROD1 and NEUROD2 are expressed in different subsets of invasive trophoblasts. NEUROD1 expression is found in interstitial and endovascular invasive cells, while NEUROD2 expression is observed mainly in endovascular invasive cells, respectively. These data suggest that in addition to the involvement of proneural genes in neuron, neurendocrine and pancreas differentiation, these genes are involved in trophoblast differentation during progression of invasion.


Frontiers in Genetics | 2012

Naturally occurring variation in trophoblast invasion as a source of novel (epigenetic) biomarkers

Marie van Dijk; Allerdien Visser; Janny Posthuma; Ankie Poutsma; Cees B.M. Oudejans

During the first trimester of pregnancy fetal trophoblasts invade the maternal decidua, thereby remodeling the maternal spiral arteries. This process of trophoblast invasion is very similar to cancer cell invasion, with multiple signaling pathways shared between the two. Pregnancy-related diseases, e.g., pre-eclampsia, and cancer metastasis start with a decrease or increase in cellular invasion, respectively. Here, we investigate if first trimester placental explants can be used to identify epigenetic factors associated with changes in cellular invasion and their potential use as biomarkers. We show that the outgrowth potential of first trimester explants significantly correlates with promoter methylation of PRKCDBP and MMP2, two genes known to be differentially methylated in both placenta and cancer. The increase in methylation percentage of placental cells coincides with an increase in invasion potential. Subsequently, as a non-invasive marker must be detectable in blood, plasma samples of pregnant and non-pregnant women were analyzed. The MMP2 promoter showed high methylation levels in non-pregnant plasma samples, which decreased in pregnant plasma samples which also contain placental DNA. The decrease in methylated plasma DNA during pregnancy is most likely due to the fractional increase in unmethylated placental DNA. This suggests that the level of unmethylated DNA has the potential to be used as an invasion marker, where higher levels of unmethylated DNA indicate a lower invasion potential of trophoblasts. These proof of principle data provide evidence that human first trimester placental explants are an excellent ex vivo model system to identify (epigenetic) factors and thus potential biomarkers associated with changes in cellular invasion, e.g., to detect pregnancy-related diseases or cancer metastasis. To identify novel biomarkers the next step is to correlate naturally occurring variation in invasion potential to changes in (epigenetic) factors by genome-wide approaches such as massively parallel sequencing.


International Journal of Biological Markers | 2007

Basic helix-loop-helix transcription factor profiling of lung tumors shows aberrant expression of the proneural gene atonal homolog 1 (ATOH1, HATH1, MATH1) in neuroendocrine tumors.

Bart A. Westerman; R.H.J. Breuer; Ankie Poutsma; A. Chhatta; L.A. Noorduyn; M.G.J. Koolen; P.E. Postmus; Marinus A. Blankenstein; Cees B.M. Oudejans

Microarray-based expression profiling studies of lung adenocarcinomas have defined neuroendocrine subclasses with poor prognosis. As neuroendocrine development is regulated by members of the achaete-scute and atonal classes of basic helix-loop-helix (bHLH) transcription factors, we analyzed lung tumors for expression of these factors. Out of 13 bHLH genes tested, 4 genes, i.e., achaete-scute complex-like 1 (ASCL1, HASH1, Mash1), atonal homolog 1 (ATOH1, HATH1, MATH1), NEUROD4 (ATH-3, Atoh3, MATH-3) and neurogenic differentiation factor 1 (NEUROD1, NEUROD, BETA2), showed differential expression among lung tumors and absent or low expression in normal lung. As expected, tumors that have high levels of ASCL1 also express neuroendocrine markers, and we found that this is accompanied by increased levels of NEUROD1. In addition, we found ATOH1 expression in 9 (16%) out of 56 analyzed adenocarcinomas and these tumors showed neuroendocrine features as shown by dopa decarboxylase mRNA expression and immunostaining for neuroendocrine markers. ATOH1 expression as well as NEUROD4 was observed in small cell lung carcinoma (SCLC), a known neuroendocrine tumor. Since ATOH1 is not known to be involved in normal lung development, our results suggest that aberrant activation of ATOH1 leads to a neuroendocrine phenotype similar to what is observed for ASCL1 activation during normal neuroendocrine development and in lung malignancies. Our preliminary data indicate that patients with ATOH1-expressing adenocarcinomas might have a worse prognosis.


Human Molecular Genetics | 2015

Mutations within the LINC-HELLP non-coding RNA differentially bind ribosomal and RNA splicing complexes and negatively affect trophoblast differentiation

Marie van Dijk; Allerdien Visser; Kwadwo M.L. Buabeng; Ankie Poutsma; Roel C. van der Schors; Cees B.M. Oudejans

LINC-HELLP, showing chromosomal linkage with the pregnancy-specific HELLP syndrome in Dutch families, reduces differentiation from a proliferative to an invasive phenotype of first-trimester extravillous trophoblasts. Here we show that mutations in LINC-HELLP identified in HELLP families negatively affect this trophoblast differentiation either by inducing proliferation rate or by causing cell cycle exit as shown by a decrease in both proliferation and invasion. As LincRNAs predominantly function through interactions with proteins, we identified the directly interacting proteins using chromatin isolation by RNA purification followed by protein mass spectrometry. We found 22 proteins predominantly clustering in two functional networks, i.e. RNA splicing and the ribosome. YBX1, PCBP1, PCBP2, RPS6 and RPL7 were validated, and binding to these proteins was influenced by the HELLP mutations carried. Finally, we show that the LINC-HELLP transcript levels are significantly upregulated in plasma of women in their first trimester of pregnancy compared with non-pregnant women, whereas this upregulation seems absent in a pilot set of patients later developing pregnancy complications, indicative of its functional significance in vivo.


PLOS ONE | 2016

Genome-Wide Identification of Epigenetic Hotspots Potentially Related to Cardiovascular Risk in Adult Women after a Complicated Pregnancy

Cees B.M. Oudejans; Ankie Poutsma; Omar Michel; Joyce Mulders; Allerdien Visser; Marie van Dijk; Tessa D. Nauta; Anouk Bokslag; Walter J. Paulus; Andreas de Haas; Pieter Koolwijk; Christianne J.M. de Groot

Background The physiological demands of pregnancy on the maternal cardiovascular system can catapult women into a metabolic syndrome that predisposes to atherosclerosis in later life. We sought to identify the nature of the epigenomic changes associated with the increased cardiovascular disease (CVD) risk in adult women following pre-eclampsia. Findings We assessed the genome wide epigenetic profile by methyl-C sequencing of monozygotic parous twin sister pairs discordant for a severe variant of pre-eclampsia. In the adult twin sisters at risk for CVD as a consequence of a complicated pregnancy, a set of 12 differentially methylated regions with at least 50% difference in methylation percentage and the same directional change was found to be shared between the affected twin sisters and significantly different compared to their unaffected monozygous sisters. Conclusion The current epigenetic marker set will permit targeted analysis of differentially methylated regions potentially related to CVD risk in large cohorts of adult women following complicated pregnancies.


Human Molecular Genetics | 2015

Susceptibility allele-specific loss of miR-1324-mediated silencing of the INO80B chromatin-assembly complex gene in pre-eclampsia

Cees B.M. Oudejans; Omar Michel; Rob Janssen; Rob Habets; Ankie Poutsma; Erik A. Sistermans; Marjan M. Weiss; Danny Incarnato; Salvatore Oliviero; Gunilla Kleiverda; Marie van Dijk; Reynir Arngrimsson

In humans, the elucidation of the genetics underlying multifactorial diseases such as pre-eclampsia remains complex. Given the current day availability of genome-wide linkage- and expression data pools, we applied pathway-guided genome-wide meta-analysis guided by the premise that the functional network underlying these multifactorial syndromes is under selective genetic pressure. This approach drastically reduced the genomic region of interest, i.e. 2p13 linked with pre-eclampsia in Icelandic families, from 8 679 641 bp (region with linkage) to 45 264 bp (coding exons of prioritized genes) (0.83%). Mutation screening of the candidate genes (n = 13) rapidly reduced the minimal critical region and showed the INO80B gene, encoding a novel winged helix domain (pfam14465) and part of the chromatin-remodeling complex, to be linked to pre-eclampsia. The functional defect in placental cells involved a susceptibility allele-dependent loss-of-gene silencing due to increased INO80B RNA stability as a consequence of differential binding of miR-1324 to the susceptibility allele of rs34174194. This risk allele is located at position 1 in an absolutely conserved 7-mer (UUGUCUG) in the 3-UTR of INO80B immediately downstream of a variant Pumillio Recognition Element (UGUANAAG). These data support that pre-eclampsia genes affect a conserved fundamental mechanism that evolved as a consequence of hemochorial placentation. Functionally, this involves founder-dependent, placentally expressed paralogous genes that regulate an essential trophoblast differentiation pathway but act at different entry points.


Scientific Reports | 2016

Noncoding RNA-regulated gain-of-function of STOX2 in Finnish pre-eclamptic families

Cees B.M. Oudejans; Ankie Poutsma; Omar Michel; Hari K. Thulluru; Joyce Mulders; Henri J. van de Vrugt; Erik A. Sistermans; Marie van Dijk

The familial forms of early onset pre-eclampsia and related syndromes (HELLP) present with hypertension and proteinuria in the mother and growth restriction of the fetus. Genetically, these clinically similar entities are caused by different founder-dependent, placentally-expressed paralogous genes. All susceptibility genes (STOX1, lincHELLP, INO80B) identified so far are master control genes that regulate an essential trophoblast differentiation pathway, but act at different entry points. Many genes remain to be identified. Here we demonstrate that a long non-coding RNA (lncRNA) within intron 3 of the STOX2 gene on 4q35.1 acts as a permissive cis-acting regulator of alternative splicing of STOX2. When this lncRNA is mutated or absent, an alternative exon (3B) of STOX2 is included. This introduces a stop codon resulting in the deletion of a highly conserved domain of 64 amino acids in the C-terminal of the STOX2 protein. A mutation present within a regulatory region within intron 1 of STOX2 has the same effect after blocking with CRISPR technology: transcripts with exon 3B are upregulated. This proces appears related to transcriptional control by a chromatin-splicing adaptor complex as described for FGFR2. For STOX2, CHD5, coding for a chromodomain helicase DNA binding protein, qualifies as the chromatin modifier in this process.

Collaboration


Dive into the Ankie Poutsma's collaboration.

Top Co-Authors

Avatar

Cees B.M. Oudejans

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Marie van Dijk

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bart A. Westerman

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joyce Mulders

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Allerdien Visser

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Omar Michel

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik A. Sistermans

VU University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge