Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anmin Zheng is active.

Publication


Featured researches published by Anmin Zheng.


Journal of the American Chemical Society | 2013

Understanding the High Photocatalytic Activity of (B, Ag)-Codoped TiO2 under Solar-Light Irradiation with XPS, Solid-State NMR, and DFT Calculations

Ningdong Feng; Qiang Wang; Anmin Zheng; Zhengfeng Zhang; Jie Fan; Shang-Bin Liu; Jean-Paul Amoureux; Feng Deng

The origin of the exceptionally high activity of (B, Ag)-codoped TiO(2) catalysts under solar-light irradiation has been investigated by XPS and (11)B solid-state NMR spectroscopy in conjunction with density functional theory (DFT) calculations. XPS experimental results demonstrated that a portion of the dopant Ag (Ag(3+)) ions were implanted into the crystalline lattice of (B, Ag)-codoped TiO(2) and were in close proximity to the interstitial B (B(int.)) sites, forming [B(int.)-O-Ag] structural units. In situ XPS experiments were employed to follow the evolution of the chemical states of the B and Ag dopants during UV-vis irradiation. It was found that the [B(int.)-O-Ag] units could trap the photoinduced electron to form a unique intermediate structure in the (B, Ag)-codoped TiO(2) during the irradiation, which is responsible for the photoinduced shifts of the B 1s and Ag 3d peaks observed in the in situ XPS spectra. Solid-state NMR experiments including (11)B triple-quantum and double-quantum magic angle spinning (MAS) NMR revealed that up to six different boron species were present in the catalysts and only the tricoordinated interstitial boron (T*) species was in close proximity to the substitutional Ag species, leading to formation of [T*-O-Ag] structural units. Furthermore, as demonstrated by DFT calculations, the [T*-O-Ag] structural units were responsible for trapping the photoinduced electrons, which prolongs the life of the photoinduced charge carriers and eventually leads to a remarkable enhancement in the photocatalytic activity. All these unprecedented findings are expected to be crucial for understanding the roles of B and Ag dopants and their synergistic effect in numerous titania-mediated photocatalytic reactions.


Journal of the American Chemical Society | 2014

Highly Mesoporous Single-Crystalline Zeolite Beta Synthesized Using a Nonsurfactant Cationic Polymer as a Dual-Function Template

Jie Zhu; Yihan Zhu; Liangkui Zhu; Marcello Stefano Rigutto; Alexander van der Made; Chengguang Yang; Shuxiang Pan; Liang Wang; Longfeng Zhu; Yinying Jin; Qi Sun; Qinming Wu; Xiangju Meng; Daliang Zhang; Yu Han; Jixue Li; Yueying Chu; Anmin Zheng; Shilun Qiu; Xiaoming Zheng; Feng-Shou Xiao

Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules.


Journal of Physical Chemistry B | 2008

Theoretical Predictions of 31P NMR Chemical Shift Threshold of Trimethylphosphine Oxide Absorbed on Solid Acid Catalysts

Anmin Zheng; Hailu Zhang; Xin Lu; Shang-Bin Liu; Feng Deng

The 31P NMR chemical shifts of adsorbed trimethylphosphine oxide (TMPO) and the configurations of the corresponding TMPOH+ complexes on Brønsted acid sites with varying acid strengths in modeled zeolites have been predicted theoretically by means of density functional theory (DFT) quantum chemical calculations. The configuration of each TMPOH+ complex was optimized at the PW91/DNP level based on an 8T cluster model, whereas the 31P chemical shifts were calculated with the gauge including atomic orbital (GIAO) approach at both the HF/TZVP and MP2/TZVP levels. A linear correlation between the 31P chemical shift of adsorbed TMPO and the proton affinity of the solid acids was observed, and a threshold for superacidity (86 ppm) was determined. This threshold for superacidity was also confirmed by comparative investigations on other superacid systems, such as carborane acid and heteropolyoxometalate H3PW12O40. In conjunction with the strong correlation between the MP2 and the HF 31P isotropic shifts, the 8T cluster model was extended to more sophisticated models (up to 72T) that are not readily tractable at the GIAO-MP2 level, and a 31P chemical shift of 86 ppm was determined for TMPO adsorbed on zeolite H-ZSM-5, which is in good agreement with the NMR experimental data.


Angewandte Chemie | 2013

Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites.

Shutao Xu; Anmin Zheng; Yingxu Wei; Jingrun Chen; Jinzhe Li; Yueying Chu; M. Zhang; Quanyi Wang; You Zhou; Jinbang Wang; Feng Deng; Zhongmin Liu

Carbenium ions in zeolites: Two important carbenium ions have been observed for the first time under working conditions of the methanol-to-olefins (MTO) reaction over chabazite zeolites using (13) C NMR spectroscopy. Their crucial roles in the MTO reaction cycles have been demonstrated by combining experiments and theoretical calculations.


Chemsuschem | 2014

Selective Catalytic Production of 5-Hydroxymethylfurfural from Glucose by Adjusting Catalyst Wettability

Liang Wang; Hong Wang; Fujian Liu; Anmin Zheng; Jian Zhang; Qi Sun; James P. Lewis; Longfeng Zhu; Xiangju Meng; Feng-Shou Xiao

The development of highly-efficient catalysts for conversion of glucose and fructose to 5-hydroxymethylfurfural (HMF) is of great importance. In this work, theoretical simulations form the basis for rational design and synthesis of a superhydrophobic mesoporous acid, that can completely prevent HMF hydration, giving HMF as sole product from full conversion of fructose. Interestingly, the combined superhydrophobic solid acid and superhydrophilic solid base catalysts are very efficient for one-pot conversion of glucose to HMF, giving a yield as high as 95.4 %. The excellent catalytic data in the conversion of glucose to HMF is attributed to the unique wettabilities of the solid acid and base catalysts.


Chemistry: A European Journal | 2014

New Insight into the Hydrocarbon‐Pool Chemistry of the Methanol‐to‐Olefins Conversion over Zeolite H‐ZSM‐5 from GC‐MS, Solid‐State NMR Spectroscopy, and DFT Calculations

Chao Wang; Yueying Chu; Anmin Zheng; Jun Xu; Qiang Wang; Pan Gao; Guodong Qi; Yanjun Gong; Feng Deng

Over zeolite H-ZSM-5, the aromatics-based hydrocarbon-pool mechanism of methanol-to-olefins (MTO) reaction was studied by GC-MS, solid-state NMR spectroscopy, and theoretical calculations. Isotopic-labeling experimental results demonstrated that polymethylbenzenes (MBs) are intimately correlated with the formation of olefin products in the initial stage. More importantly, three types of cyclopentenyl cations (1,3-dimethylcyclopentenyl, 1,2,3-trimethylcyclopentenyl, and 1,3,4-trimethylcyclopentenyl cations) and a pentamethylbenzenium ion were for the first time identified by solid-state NMR spectroscopy and DFT calculations under both co-feeding ([(13) C6 ]benzene and methanol) conditions and typical MTO working (feeding [(13) C]methanol alone) conditions. The comparable reactivity of the MBs (from xylene to tetramethylbenzene) and the carbocations (trimethylcyclopentenyl and pentamethylbenzium ions) in the MTO reaction was revealed by (13) C-labeling experiments, evidencing that they work together through a paring mechanism to produce propene. The paring route in a full aromatics-based catalytic cycle was also supported by theoretical DFT calculations.


Journal of Materials Chemistry | 2013

Comprehensive investigation of CO2 adsorption on Mg-Al-CO3 LDH-derived mixed metal oxides

Yanshan Gao; Zhang Zhang; Jingwen Wu; Xianfeng Yi; Anmin Zheng; Ahmad Umar; Dermot O'Hare; Qiang Wang

Layered double hydroxides (LDHs) have been intensively studied for high-temperature CO2 capture. However, big differences in the CO2 capture capacity, ranging from 0.28 to 0.6 mmol g−1, have often been reported for the same Mg–Al–CO3 LDH. Furthermore, how the active Mg–O species that are responsible for CO2 adsorption are formed is still unclear. In this work, we have performed a comprehensive investigation on the CO2 adsorption characteristics of Mg–Al–CO3 LDH-derived mixed metal oxides. Based on these results we proposed the possible adsorption sites and the mechanisms for CO2 adsorption. Initially, the effects of synthesis method, Mg : Al ratio, pretreatment conditions, adsorption conditions, and thermal stability on the CO2 adsorption capacity were systematically studied. By carefully examining the structural changes during thermal treatment using X-ray diffraction and solid state NMR, we suggest that the active Mg–O species could be induced either by the substitution of Mg2+ by Al3+ in the periclase MgO lattice, or by the diffusion of Al3+ out of the octahedral brucite layers. This work not only suggests the optimal testing conditions for LDH-derived CO2 adsorbents, but also provides a clearer understanding of the CO2 adsorption sites and mechanisms on LDH-derived mixed oxides and sheds light on the synthesis and utilization of LDH-derived high-temperature CO2 adsorption materials.


Journal of Physical Chemistry A | 2008

31P Chemical Shift of Adsorbed Trialkylphosphine Oxides for Acidity Characterization of Solid Acids Catalysts

Anmin Zheng; Shing-Jong Huang; Wen-Hua Chen; Pei-Hao Wu; Hailu Zhang; Huang-Kuei Lee; Louis-Charles de Ménorval; Feng Deng; Shang-Bin Liu

A comprehensive study has been made to predict the adsorption structures and (31)P NMR chemical shifts of various trialkylphosphine oxides (R3PO) probe molecules, viz., trimethylphosphine oxide (TMPO), triethylphosphine oxide (TEPO), tributylphosphine oxide (TBPO), and trioctylphosphine oxide (TOPO), by density functional theory (DFT) calculations based on 8T zeolite cluster models with varied Si-H bond lengths. A linear correlation between the (31)P chemical shifts and proton affinity (PA) was observed for each of the homologous R3PO probe molecules examined. It is found that the differences in (31)P chemical shifts of the R3POH(+) adsorption complexes, when referring to the corresponding chemical shifts in their crystalline phase, may be used not only in identifying Brønsted acid sites with varied acid strengths but also in correlating the (31)P NMR data obtained from various R3PO probes. Such a chemical shift difference therefore can serve as a quantitative measure during acidity characterization of solid acid catalysts when utilizing (31)P NMR of various adsorbed R3PO, as proposed in our earlier report (Zhao; et al. J. Phys. Chem. B 2002, 106, 4462) and also illustrated herein by using a mesoporous H-MCM-41 aluminosilicate (Si/Al = 25) test adsorbent. It is indicative that, with the exception of (TMPO), variations in the alkyl chain length of the R3PO (R = C(n)H(2n+1); n > or = 2) probe molecules have only negligible effect on the (31)P chemical shifts (within experimental error of ca. 1-2 ppm) either in their crystalline bulk or in their corresponding R3POH(+) adsorption complexes. Consequently, an average offset of 8 +/- 2 ppm was observed for (31)P chemical shifts of adsorbed R3PO with n > or = 2 relative to TMPO (n = 1). Moreover, by taking the value of 86 ppm predicted for TMPO adsorbed on 8T cluster models as a threshold for superacidity (Zheng; et al. J. Phys. Chem. B 2008, 112, 4496), a similar threshold (31)P chemical shift of ca. 92-94 ppm was deduced for TEPO, TBPO, and TOPO.


Accounts of Chemical Research | 2016

Acidic Properties and Structure-Activity Correlations of Solid Acid Catalysts Revealed by Solid-State NMR Spectroscopy.

Anmin Zheng; Shenhui Li; Shang-Bin Liu; Feng Deng

Solid acid materials with tunable structural and acidic properties are promising heterogeneous catalysts for manipulating and/or emulating the activity and selectivity of industrially important catalytic reactions. On the other hand, the performances of acid-catalyzed reactions are mostly dictated by the acidic features, namely, type (Brønsted vs Lewis acidity), amount, strength, and local environment of acid sites. The latter is relevant to their location (intra- vs extracrystalline), and possible confinement and Brønsted-Lewis acid synergy effects that may strongly affect the host-guest interactions, reaction mechanism, and shape selectivity of the catalytic system. This account aims to highlight some important applications of state-of-the-art solid-state NMR (SSNMR) techniques for exploring the structural and acidic properties of solid acid catalysts as well as their catalytic performances and relevant reaction pathway invoked. In addition, density functional theory (DFT) calculations may be exploited in conjunction with experimental SSNMR studies to verify the structure-activity correlations of the catalytic system at a microscopic scale. We describe in this Account the developments and applications of advanced ex situ and/or in situ SSNMR techniques, such as two-dimensional (2D) double-quantum magic-angle spinning (DQ MAS) homonuclear correlation spectroscopy for structural investigation of solid acids as well as study of their acidic properties. Moreover, the energies and electronic structures of the catalysts and detailed catalytic reaction processes, including the identification of reaction species, elucidation of reaction mechanism, and verification of structure-activity correlations, made available by DFT theoretical calculations were also discussed. Relevant discussions will focus primarily on results obtained from our laboratories in the past decade, including (i) quantitative and qualitative acidity characterization utilizing assorted probe molecules, (ii) probing the spatial proximity and synergy effect of acid sites, and (iii) influence of acid features and pore confinement effect on catalytic activity, transition-state stability, reaction pathway, and product selectivity of solid acid catalysts such as zeolites, metal oxides, and heteropolyacids. It is conclusive that a synergy of acidity (local effect) and pore confinement (environmental effect) tend to strongly dictate the formations of intermediates and transition states, hence, the reaction pathways and catalytic performance of solid acid catalysts. We hope that these information can provide additional insights toward our understanding in heterogeneous catalysis, especially the roles of structural and acidic properties on catalytic performances and reaction mechanism of acid-catalyzed systems, which should be beneficial for rational design of solid acid catalysts.


Journal of the American Chemical Society | 2013

Formation Pathway for LTA Zeolite Crystals Synthesized via a Charge Density Mismatch Approach

Min Bum Park; Yoorim Lee; Anmin Zheng; Feng-Shou Xiao; Christopher P. Nicholas; Gregory J. Lewis; Suk Bong Hong

A solid understanding of the molecular-level mechanisms responsible for zeolite crystallization remains one of the most challenging issues in modern zeolite science. Here we investigated the formation pathway for high-silica LTA zeolite crystals in the simultaneous presence of tetraethylammonium (TEA(+)), tetramethylammonium (TMA(+)), and Na(+) ions as structure-directing agents (SDAs) with the goal of better understanding the charge density mismatch synthesis approach, which was designed to foster cooperation between two or more different SDAs. Nucleation was found to begin with the formation of lta-cages rather than the notably smaller sod and d4r-cages, with concomitant incorporation of TMA(+) and Na(+) into a very small amount of the solid phase with a low Si/Al ratio (ca. 2.5). The overall characterization results of our work demonstrate that sod-cages are first built around the preorganized lta-cages and that d4r-cages are in turn constructed by the progressive addition of low-molecular-weight (alumino)silicate species, which promotes the formation and growth of embryonic LTA zeolite crystals. We also show that the crystal growth may take place by a similar process in which TEA(+) is also incorporated, forming a single LTA zeolite phase with a higher Si/Al ratio (ca. 3.3).

Collaboration


Dive into the Anmin Zheng's collaboration.

Top Co-Authors

Avatar

Feng Deng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xianfeng Yi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yueying Chu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shenhui Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qiang Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chaohui Ye

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lei Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hailu Zhang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge