Ann C. Kelley
Laboratory of Molecular Biology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ann C. Kelley.
Science | 2006
Maria Selmer; Christine M. Dunham; Frank V. Murphy; Albert Weixlbaumer; Sabine Petry; Ann C. Kelley; John R. Weir; V. Ramakrishnan
The crystal structure of the bacterial 70S ribosome refined to 2.8 angstrom resolution reveals atomic details of its interactions with messenger RNA (mRNA) and transfer RNA (tRNA). A metal ion stabilizes a kink in the mRNA that demarcates the boundary between A and P sites, which is potentially important to prevent slippage of mRNA. Metal ions also stabilize the intersubunit interface. The interactions of E-site tRNA with the 50S subunit have both similarities and differences compared to those in the archaeal ribosome. The structure also rationalizes much biochemical and genetic data on translation.
Science | 2009
T. Martin Schmeing; Rebecca M. Voorhees; Ann C. Kelley; Yong-Gui Gao; Frank V. Murphy; John R. Weir; V. Ramakrishnan
Ribosomes Caught in Translation To synthesize proteins, the ribosome must select cognate transfer RNAs (tRNAs) based on base-pairing with the messenger RNA (mRNA) template (a process known as decoding), form a peptide bond, and then move the mRNA:tRNA assembly relative to the ribosome (a process known as translocation). Decoding and translocation require protein guanosine triphosphatases (GTPases), and, while high-resolution structures of the ribosome have greatly furthered our understanding of ribosome function, the detailed mechanism of these GTPases during the elongation cycle remains unclear. Two Research Articles now give a clearer view of these steps in bacterial protein synthesis (see the Perspective by Liljas). Schmeing et al. (p. 688, published online 15 October) present the crystal structure of the ribosome bound to Elongation factor-Tu (EF-Tu) and amino-acyl tRNA that gives insight into how EF-Tu contributes to accurate decoding. Gao et al. (p. 694, published online 15 October) describe the crystal structure of the ribosome bound to Elongation factor-G (EF-G) trapped in a posttranslocation state by the antibiotic fusidic acid that gives insight into how EF-G functions in translocation. Crystal structures of the ribosome bound to elongation factors provide insights into translocation and decoding. The ribosome selects a correct transfer RNA (tRNA) for each amino acid added to the polypeptide chain, as directed by messenger RNA. Aminoacyl-tRNA is delivered to the ribosome by elongation factor Tu (EF-Tu), which hydrolyzes guanosine triphosphate (GTP) and releases tRNA in response to codon recognition. The signaling pathway that leads to GTP hydrolysis upon codon recognition is critical to accurate decoding. Here we present the crystal structure of the ribosome complexed with EF-Tu and aminoacyl-tRNA, refined to 3.6 angstrom resolution. The structure reveals details of the tRNA distortion that allows aminoacyl-tRNA to interact simultaneously with the decoding center of the 30S subunit and EF-Tu at the factor binding site. A series of conformational changes in EF-Tu and aminoacyl-tRNA suggests a communication pathway between the decoding center and the guanosine triphosphatase center of EF-Tu.
Science | 2014
Yong-Gui Gao; Maria Selmer; Christine M. Dunham; Albert Weixlbaumer; Ann C. Kelley; V. Ramakrishnan
Ribosomes Caught in Translation To synthesize proteins, the ribosome must select cognate transfer RNAs (tRNAs) based on base-pairing with the messenger RNA (mRNA) template (a process known as decoding), form a peptide bond, and then move the mRNA:tRNA assembly relative to the ribosome (a process known as translocation). Decoding and translocation require protein guanosine triphosphatases (GTPases), and, while high-resolution structures of the ribosome have greatly furthered our understanding of ribosome function, the detailed mechanism of these GTPases during the elongation cycle remains unclear. Two Research Articles now give a clearer view of these steps in bacterial protein synthesis (see the Perspective by Liljas). Schmeing et al. (p. 688, published online 15 October) present the crystal structure of the ribosome bound to Elongation factor-Tu (EF-Tu) and amino-acyl tRNA that gives insight into how EF-Tu contributes to accurate decoding. Gao et al. (p. 694, published online 15 October) describe the crystal structure of the ribosome bound to Elongation factor-G (EF-G) trapped in a posttranslocation state by the antibiotic fusidic acid that gives insight into how EF-G functions in translocation. Crystal structures of the ribosome bound to elongation factors provide insights into translocation and decoding. Elongation factor G (EF-G) is a guanosine triphosphatase (GTPase) that plays a crucial role in the translocation of transfer RNAs (tRNAs) and messenger RNA (mRNA) during translation by the ribosome. We report a crystal structure refined to 3.6 angstrom resolution of the ribosome trapped with EF-G in the posttranslocational state using the antibiotic fusidic acid. Fusidic acid traps EF-G in a conformation intermediate between the guanosine triphosphate and guanosine diphosphate forms. The interaction of EF-G with ribosomal elements implicated in stimulating catalysis, such as the L10-L12 stalk and the L11 region, and of domain IV of EF-G with the tRNA at the peptidyl-tRNA binding site (P site) and with mRNA shed light on the role of these elements in EF-G function. The stabilization of the mobile stalks of the ribosome also results in a more complete description of its structure.
Nature Structural & Molecular Biology | 2009
Rebecca M. Voorhees; Albert Weixlbaumer; David Loakes; Ann C. Kelley; V. Ramakrishnan
Protein synthesis is catalyzed in the peptidyl transferase center (PTC), located in the large (50S) subunit of the ribosome. No high-resolution structure of the intact ribosome has contained a complete active site including both A- and P-site tRNAs. In addition, although past structures of the 50S subunit have found no ordered proteins at the PTC, biochemical evidence suggests that specific proteins are capable of interacting with the 3′ ends of tRNA ligands. Here we present structures, at 3.6-Å and 3.5-Å resolution respectively, of the 70S ribosome in complex with A- and P-site tRNAs that mimic pre- and post-peptidyl-transfer states. These structures demonstrate that the PTC is very similar between the 50S subunit and the intact ribosome. They also reveal interactions between the ribosomal proteins L16 and L27 and the tRNA substrates, helping to elucidate the role of these proteins in peptidyl transfer.
Science | 2010
Rebecca M. Voorhees; T. Martin Schmeing; Ann C. Kelley; V. Ramakrishnan
A Likely Conformation At several stages of protein synthesis, guanosine triphosphate hydrolyzing enzymes (GTPases) interact with the ribosome, and GTP hydrolysis is coupled to progression of synthesis. Voorhees et al. (p. 835) have determined a 3.2-resolution structure of the GTPase, elongation factor Tu, which delivers amino-acyl transfer RNA (tRNA) to the ribosome. The GTPase and tRNA were bound to the ribosome and were stalled in an active conformation by a GTP analog. The structure revealed that activation of the enzyme only required small changes in conformation to move a catalytic histidine into the correct position for hydrolysis. A similar mechanism likely applies to the activation of other translational GTPases. The ribosome stabilizes the active conformation of the guanosine triphosphatase elongation factor Tu to facilitate delivery of transfer RNA. Protein synthesis requires several guanosine triphosphatase (GTPase) factors, including elongation factor Tu (EF-Tu), which delivers aminoacyl–transfer RNAs (tRNAs) to the ribosome. To understand how the ribosome triggers GTP hydrolysis in translational GTPases, we have determined the crystal structure of EF-Tu and aminoacyl-tRNA bound to the ribosome with a GTP analog, to 3.2 angstrom resolution. EF-Tu is in its active conformation, the switch I loop is ordered, and the catalytic histidine is coordinating the nucleophilic water in position for inline attack on the γ-phosphate of GTP. This activated conformation is due to a critical and conserved interaction of the histidine with A2662 of the sarcin-ricin loop of the 23S ribosomal RNA. The structure suggests a universal mechanism for GTPase activation and hydrolysis in translational GTPases on the ribosome.
Science | 2014
Albert Weixlbaumer; Hong Jin; Cajetan Neubauer; Rebecca M. Voorhees; Sabine Petry; Ann C. Kelley; V. Ramakrishnan
The termination of protein synthesis occurs through the specific recognition of a stop codon in the A site of the ribosome by a release factor (RF), which then catalyzes the hydrolysis of the nascent protein chain from the P-site transfer RNA. Here we present, at a resolution of 3.5 angstroms, the crystal structure of RF2 in complex with its cognate UGA stop codon in the 70S ribosome. The structure provides insight into how RF2 specifically recognizes the stop codon; it also suggests a model for the role of a universally conserved GGQ motif in the catalysis of peptide release.
Cell | 2005
Sabine Petry; Ditlev E. Brodersen; Frank V. Murphy; Christine M. Dunham; Maria Selmer; Michael J. Tarry; Ann C. Kelley; V. Ramakrishnan
During protein synthesis, translational release factors catalyze the release of the polypeptide chain when a stop codon on the mRNA reaches the A site of the ribosome. The detailed mechanism of this process is currently unknown. We present here the crystal structures of the ribosome from Thermus thermophilus with RF1 and RF2 bound to their cognate stop codons, at resolutions of 5.9 Angstrom and 6.7 Angstrom, respectively. The structures reveal details of interactions of the factors with the ribosome and mRNA, including elements previously implicated in decoding and peptide release. They also shed light on conformational changes both in the factors and in the ribosome during termination. Differences seen in the interaction of RF1 and RF2 with the L11 region of the ribosome allow us to rationalize previous biochemical data. Finally, this work demonstrates the feasibility of crystallizing ribosomes with bound factors at a defined state along the translational pathway.
The EMBO Journal | 2009
Jan-Christian Jan-Christian Schuette; Frank V. Murphy; Ann C. Kelley; John R. Weir; Jan Giesebrecht; Sean R. Connell; Justus Loerke; Thorsten Mielke; Wei Zhang; Pawel A. Penczek; V. Ramakrishnan; Christian M. T. Spahn
We have used single‐particle reconstruction in cryo‐electron microscopy to determine a structure of the Thermus thermophilus ribosome in which the ternary complex of elongation factor Tu (EF‐Tu), tRNA and guanine nucleotide has been trapped on the ribosome using the antibiotic kirromycin. This represents the state in the decoding process just after codon recognition by tRNA and the resulting GTP hydrolysis by EF‐Tu, but before the release of EF‐Tu from the ribosome. Progress in sample purification and image processing made it possible to reach a resolution of 6.4 Å. Secondary structure elements in tRNA, EF‐Tu and the ribosome, and even GDP and kirromycin, could all be visualized directly. The structure reveals a complex conformational rearrangement of the tRNA in the A/T state and the interactions with the functionally important switch regions of EF‐Tu crucial to GTP hydrolysis. Thus, the structure provides insights into the molecular mechanism of signalling codon recognition from the decoding centre of the 30S subunit to the GTPase centre of EF‐Tu.
Cell | 2009
Cajetan Neubauer; Yong-Gui Gao; Kasper R. Andersen; Christine M. Dunham; Ann C. Kelley; Jendrik Hentschel; Kenn Gerdes; V. Ramakrishnan; Ditlev E. Brodersen
Summary Translational control is widely used to adjust gene expression levels. During the stringent response in bacteria, mRNA is degraded on the ribosome by the ribosome-dependent endonuclease, RelE. The molecular basis for recognition of the ribosome and mRNA by RelE and the mechanism of cleavage are unknown. Here, we present crystal structures of E. coli RelE in isolation (2.5 Å) and bound to programmed Thermus thermophilus 70S ribosomes before (3.3 Å) and after (3.6 Å) cleavage. RelE occupies the A site and causes cleavage of mRNA after the second nucleotide of the codon by reorienting and activating the mRNA for 2′-OH-induced hydrolysis. Stacking of A site codon bases with conserved residues in RelE and 16S rRNA explains the requirement for the ribosome in catalysis and the subtle sequence specificity of the reaction. These structures provide detailed insight into the translational regulation on the bacterial ribosome by mRNA cleavage.
Science | 2013
David S. Tourigny; Israel S. Fernández; Ann C. Kelley; V. Ramakrishnan
Introduction After peptidyl transfer, the movement of messenger RNA (mRNA) and transfer RNAs (tRNAs) with respect to the ribosome places the next mRNA codon in the A site. This process of translocation proceeds via an intermediate state in which the acceptor ends of the tRNAs have moved with respect to the 50S subunit but not the 30S subunit, to result in A/P and P/E tRNA hybrid states. The guanosine triphosphatase elongation factor G (EF-G) catalyzes the subsequent movement of mRNA and tRNA with respect to the 30S subunit. How EF-G binds to the intermediate state of the ribosome and how this results in guanosine 5′-triphosphate (GTP) hydrolysis and translocation are questions that will be greatly facilitated by a high-resolution structure of the complex. Structure of EF-G with GDPCP bound to the ribosome in an intermediate state of translocation. (A) Overview of the structure with a hybrid P/E tRNA. (B) Rotation of the body and swiveling of the head of the 30S subunit (yellow), compared to the canonical state (gray)