Ann C. Mladek
Mayo Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ann C. Mladek.
Journal of Biological Chemistry | 1998
Tiffany Cook; Brian Gebelein; Kristin Mesa; Ann C. Mladek; Raul Urrutia
Sp1-like zinc finger transcription factors are involved in the regulation of cell growth and differentiation. Recent evidence demonstrating that mammalian cells express novel, yet uncharacterized, Sp1-like proteins has stimulated a search for new members of this family. We and others have recently reported that the transforming growth factor (TGF)-β-regulated gene TIEGencodes a new Sp1-like protein that inhibits cell growth in cultured cells. Here we report the identification, nuclear localization, DNA binding activity, transcriptional repression activity, and growth inhibitory effects of TIEG2, a novel TGF-β-inducible gene related to TIEG. TIEG2 is ubiquitously expressed in human tissues, with an enrichment in pancreas and muscle. TIEG2 shares 91% homology with TIEG1 within the zinc finger region and 44% homology within the N terminus. Biochemical characterization reveals that TIEG2 is a nuclear protein, which, as predicted from the primary structure, specifically binds to an Sp1-like DNA sequence in vitroand can repress a promoter containing Sp1-like binding sites in transfected Chinese hamster ovary epithelial cells. Furthermore, functional studies using [3H]thymidine uptake and MTS (3-(4,3-dimethyltiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assays demonstrate that the overexpression of TIEG2 in Chinese hamster ovary cells inhibits cell proliferation. Thus, TIEG2, together with TIEG1, defines a new subfamily of TGF-β-inducible Sp1-like proteins involved in the regulation of cell growth.
The EMBO Journal | 2003
Martin E. Fernandez-Zapico; Ann C. Mladek; Volker Ellenrieder; Emma Folch-Puy; Laurence J. Miller; Raul Urrutia
KLF11 is a biochemical paradigm for a subset of proteins that repress transcription via a Mad1‐like mSin3A interacting domain (SID). The biological role of these proteins and the significance of their biochemical activity, however, remain to be established. We report that KLF11 is downregulated in human cancers, inhibits cell growth in vitro and in vivo, and suppresses neoplastic transformation. Transgenic mice for KLF11 display a downregulation of genes encoding the oxidative stress scavengers SOD2 and Catalase1. Chromatin immunoprecipitation assays confirm that, indeed, these genes are bonafide targets of KLF11. KLF11 expression renders cells more sensitive to oxidative drugs, an effect that is rescued by infection with recombinant adenoviruses expressing SOD2 and Catalase1. KLF11‐regulated functions require the Mad1‐like SID, indicating that these target genes involved in these phenomena are regulated via this corepressor system. These results demonstrate that SID‐containing KLF repressor proteins can inhibit cell growth and neoplastic transformation, and outline for the first time cellular and molecular mechanisms by which these functions may be achieved.
Neuro-oncology | 2012
Ling Cen; Brett L. Carlson; Mark A. Schroeder; Jamie L. Ostrem; Gaspar J. Kitange; Ann C. Mladek; Stephanie R. Fink; Paul A. Decker; Wenting Wu; Jung-Sik Kim; Todd Waldman; Robert B. Jenkins; Jann N. Sarkaria
Deregulation of the p16(INK4a)-Cdk4/6-Rb pathway is commonly detected in patients with glioblastoma multiforme (GBM) and is a rational therapeutic target. Here, we characterized the p16(INK4a)-Cdk4/6-Rb pathway in the Mayo panel of GBM xenografts, established from primary tissue samples from patients with GBM, and evaluated their response to PD0332991, a specific inhibitor of Cdk4/6. All GBM xenograft lines evaluated in this study had disruptions in the p16(INK4a)-Cdk4/6-Rb pathway. In vitro evaluation using short-term explant cultures from selected GBM xenograft lines showed that PD0332991 effectively arrested cell cycle in G1-phase and inhibited cell proliferation dose-dependently in lines deleted for CDKN2A/B-p16(INK4a) and either single-copy deletion of CDK4 (GBM22), high-level CDK6 amplification (GBM34), or deletion of CDKN2C/p18(INK4c) (GBM43). In contrast, 2 GBM lines with p16(INK4a) expression and either CDK4 amplification (GBM5) or RB mutation (GBM28) were completely resistant to PD0332991. Additional xenograft lines were screened, and GBM63 was identified to have p16(INK4a) expression and CDK4 amplification. Similar to the results with GBM5, GBM63 was resistant to PD0332991 treatment. In an orthotopic survival model, treatment of GBM6 xenografts (CDKN2A/B-deleted and CDK4 wild-type) with PD0332991 significantly suppressed tumor cell proliferation and prolonged survival. Collectively, these data support the concept that GBM tumors lacking p16(INK4a) expression and with nonamplified CDK4 and wild-type RB status may be more susceptible to Cdk4/6 inhibition using PD0332991.
Clinical Cancer Research | 2012
Gaspar J. Kitange; Ann C. Mladek; Brett L. Carlson; Mark A. Schroeder; Jenny L. Pokorny; Ling Cen; Paul A. Decker; Wenting Wu; Gwen Lomberk; Shiv K. Gupta; Raul Urrutia; Jann N. Sarkaria
Purpose: The therapeutic benefit of temozolomide in glioblastoma multiforme (GBM) is limited by resistance. The goal of this study was to elucidate mechanisms of temozolomide resistance in GBM. Experimental Design: We developed an in vivo GBM model of temozolomide resistance and used paired parental and temozolomide-resistant tumors to define the mechanisms underlying the development of resistance and the influence of histone deacetylation (HDAC) inhibition. Results: Analysis of paired parental and resistant lines showed upregulation of O6-methylguanine-DNA methyltransferase (MGMT) expression in 3 of the 5 resistant xenografts. While no significant change was detected in MGMT promoter methylation between parental and derivative-resistant samples, chromatin immunoprecipitation showed an association between MGMT upregulation and elevated acetylation of lysine 9 of histone H3 (H3K9-ac) and decreased dimethylation (H3K9-me2) in GBM12 and GBM14. In contrast, temozolomide resistance development in GBM22 was not linked to MGMT expression, and both parental and resistant lines had low H3K9-ac and high H3K9-me2 within the MGMT promoter. In the GBM12TMZ-resistant line, MGMT reexpression was accompanied by increased recruitment of SP1, C-JUN, NF-κB, and p300 within the MGMT promoter. Interestingly, combined treatment of GBM12 flank xenografts with temozolomide and the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) favored the evolution of temozolomide resistance by MGMT overexpression as compared with treatment with temozolomide alone. Conclusion: This study shows, for the first time, a unique mechanism of temozolomide resistance development driven by chromatin-mediated MGMT upregulation and highlights the potential for epigenetically directed therapies to influence the mechanisms of resistance development in GBM. Clin Cancer Res; 18(15); 4070–9. ©2012 AACR.
Molecular Cancer Therapeutics | 2009
Michelle J. Clarke; Mulligan Ea; Patrick T. Grogan; Ann C. Mladek; Brett L. Carlson; Mark A. Schroeder; Nicola J. Curtin; Zhenkun Lou; Paul A. Decker; Wenting Wu; Elizabeth R. Plummer; Jann N. Sarkaria
Resistance to temozolomide and radiotherapy is a major problem for patients with glioblastoma but may be overcome using the poly(ADP-ribose) polymerase inhibitor ABT-888. Using two primary glioblastoma xenografts, the efficacy of ABT-888 combined with radiotherapy and/or temozolomide was evaluated. Treatment with ABT-888 combined with temozolomide resulted in significant survival prolongation (GBM12: 55.1%, P = 0.005; GBM22: 54.4%, P = 0.043). ABT-888 had no effect with radiotherapy alone but significantly enhanced survival in GBM12 when combined with concurrent radiotherapy/temozolomide. With multicycle therapy, ABT-888 further extended the survival benefit of temozolomide in the inherently sensitive GBM12 and GBM22 xenograft lines. However, after in vivo selection for temozolomide resistance, the derivative GBM12TMZ and GBM22TMZ lines were no longer sensitized by ABT-888 in combination with temozolomide, and a similar lack of efficacy was observed in two other temozolomide-resistant tumor lines. Thus, the sensitizing effects of ABT-888 were limited to tumor lines that have not been previously exposed to temozolomide, and these results suggest that patients with newly diagnosed glioblastoma may be more likely to respond to combined temozolomide/poly(ADP-ribose) polymerase inhibitor therapy than patients with recurrent disease. [Mol Cancer Ther 2009;8(2):OF407–8]
International Journal of Radiation Oncology Biology Physics | 2009
Brett L. Carlson; Patrick T. Grogan; Ann C. Mladek; Mark A. Schroeder; Gaspar J. Kitange; Paul A. Decker; Caterina Giannini; Wenting Wu; Karla A. Ballman; C. David James; Jann N. Sarkaria
PURPOSE Concurrent temozolomide (TMZ) and radiation therapy (RT) followed by adjuvant TMZ is standard treatment for patients with glioblastoma multiforme (GBM), although the relative contribution of concurrent versus adjuvant TMZ is unknown. In this study, the efficacy of TMZ/RT was tested with a panel of 20 primary GBM xenografts. METHODS AND MATERIALS Mice with intracranial xenografts were treated with TMZ, RT, TMZ/RT, or placebo. Survival ratio for a given treatment/line was defined as the ratio of median survival for treatment vs. placebo. RESULTS The median survival ratio was significantly higher for O6-methylguanine-DNA methyltransferase (MGMT) methylated tumors versus unmethylated tumors following treatment with TMZ (median survival ratio, 3.6 vs. 1.5, respectively; p = 0.008) or TMZ/RT (5.7 vs. 2.3, respectively; p = 0.001) but not RT alone (1.7 vs. 1.6; p = 0.47). In an analysis of variance, MGMT methylation status and p53 mutation status were significantly associated with treatment response. When we analyzed the additional survival benefit conferred specifically by combined therapy, only a subset (5 of 11) of MGMT methylated tumors derived substantial additional benefit from combined therapy, while none of the MGMT unmethylated tumors did. Consistent with a true radiosensitizing effect of TMZ, sequential treatment in which RT (week 1) was followed by TMZ (week 2) proved significantly less effective than TMZ followed by RT or concurrent TMZ/RT (survival ratios of 4.0, 9.6 and 12.9, respectively; p < 0.0001). CONCLUSIONS Concurrent treatment with TMZ and RT provides significant survival benefit only in a subset of MGMT methylated tumors and provides superior antitumor activity relative to sequential administration of RT and TMZ.
International Journal of Radiation Oncology Biology Physics | 2009
Brett L. Carlson; Patrick T. Grogan; Ann C. Mladek; Mark A. Schroeder; Gaspar J. Kitange; Paul A. Decker; Caterina Giannini; Wenting Wu; Karla A. Ballman; C. David James; Jann N. Sarkaria
PURPOSE Concurrent temozolomide (TMZ) and radiation therapy (RT) followed by adjuvant TMZ is standard treatment for patients with glioblastoma multiforme (GBM), although the relative contribution of concurrent versus adjuvant TMZ is unknown. In this study, the efficacy of TMZ/RT was tested with a panel of 20 primary GBM xenografts. METHODS AND MATERIALS Mice with intracranial xenografts were treated with TMZ, RT, TMZ/RT, or placebo. Survival ratio for a given treatment/line was defined as the ratio of median survival for treatment vs. placebo. RESULTS The median survival ratio was significantly higher for O6-methylguanine-DNA methyltransferase (MGMT) methylated tumors versus unmethylated tumors following treatment with TMZ (median survival ratio, 3.6 vs. 1.5, respectively; p = 0.008) or TMZ/RT (5.7 vs. 2.3, respectively; p = 0.001) but not RT alone (1.7 vs. 1.6; p = 0.47). In an analysis of variance, MGMT methylation status and p53 mutation status were significantly associated with treatment response. When we analyzed the additional survival benefit conferred specifically by combined therapy, only a subset (5 of 11) of MGMT methylated tumors derived substantial additional benefit from combined therapy, while none of the MGMT unmethylated tumors did. Consistent with a true radiosensitizing effect of TMZ, sequential treatment in which RT (week 1) was followed by TMZ (week 2) proved significantly less effective than TMZ followed by RT or concurrent TMZ/RT (survival ratios of 4.0, 9.6 and 12.9, respectively; p < 0.0001). CONCLUSIONS Concurrent treatment with TMZ and RT provides significant survival benefit only in a subset of MGMT methylated tumors and provides superior antitumor activity relative to sequential administration of RT and TMZ.
Journal of Thoracic Oncology | 2007
Jann N. Sarkaria; Paul Schwingler; Steven E. Schild; Patrick T. Grogan; Ann C. Mladek; Sumithra J. Mandrekar; Angelina D. Tan; Takao Kobayashi; Randolph S. Marks; Hirohito Kita; Robert C. Miller; Andrew H. Limper; Edward B. Leof
Purpose: The safety and tolerability of sirolimus combined with thoracic radiation and cisplatin was evaluated in patients with lung cancer. In parallel, the effects of sirolimus were studied in a murine model of radiation pneumonitis. Materials and Methods: The phase I trial evaluated standard three-dimensional conformal thoracic radiation therapy (60 Gy) and weekly cisplatin (25 mg/m2 IV) in combination with escalating doses of oral sirolimus. Sirolimus drug levels and inhibition of mTOR signaling to ribosomal S6 protein were assessed in blood. The effects of sirolimus administered during and after whole thoracic radiation of C57BL6/J mice were evaluated by monitoring mouse breathing rates and survival. Results: Seven patients with stage III lung cancer were accrued to the clinical study. None of the four patients treated with 2 mg/day sirolimus developed dose-limiting toxicities. Three patients were treated with 5 mg/day sirolimus, and one patient at this dose level had dose-limiting toxicity of grade 3 dysphagia. However, the maximally tolerated dose of sirolumus in this regimen was not defined because the study was terminated prematurely because of loss of funding. In the mouse experiments, concomitant sirolimus treatment was not associated with an increase in radiation-associated morbidity or mortality. Conclusions: Combination therapy with sirolimus, radiation, and cisplatin was well tolerated in patients.
Head and Neck-journal for The Sciences and Specialties of The Head and Neck | 2008
David Atkinson; Michelle J. Clarke; Ann C. Mladek; Brett L. Carlson; David Trump; Mark Jacobson; Brad Kemp; Val J. Lowe; Jann N. Sarkaria
3′‐18F‐fluoro‐3′‐deoxy‐fluorothymidine (18F‐FLT), a nucleoside analog, could monitor effects of molecularly targeted therapeutics on tumor proliferation.
Journal of the National Cancer Institute | 2015
Shiv K. Gupta; Sani H. Kizilbash; Brett L. Carlson; Ann C. Mladek; Felix Boakye-Agyeman; Katrina Bakken; Jenny L. Pokorny; Mark A. Schroeder; Paul A. Decker; Ling Cen; Jeanette E. Eckel-Passow; Gobinda Sarkar; Karla V. Ballman; Joel M. Reid; Robert B. Jenkins; Roeland Verhaak; Erik P. Sulman; Gaspar J. Kitange; Jann N. Sarkaria
BACKGROUND Sensitizing effects of poly-ADP-ribose polymerase inhibitors have been studied in several preclinical models, but a clear understanding of predictive biomarkers is lacking. In this study, in vivo efficacy of veliparib combined with temozolomide (TMZ) was evaluated in a large panel of glioblastoma multiforme (GBM) patient-derived xenografts (PDX) and potential biomarkers were analyzed. METHODS The efficacy of TMZ alone vs TMZ/veliparib was compared in a panel of 28 GBM PDX lines grown as orthotopic xenografts (8-10 mice per group); all tests of statistical significance were two-sided. DNA damage was analyzed by γH2AX immunostaining and promoter methylation of DNA repair gene O6-methylguanine-DNA-methyltransferase (MGMT) by Clinical Laboratory Improvement Amendments-approved methylation-specific polymerase chain reaction. RESULTS The combination of TMZ/veliparib statistically significantly extended survival of GBM models (P < .05 by log-rank) compared with TMZ alone in five of 20 MGMT-hypermethylated lines (average extension in median survival = 87 days, range = 20-150 days), while the combination was ineffective in six MGMT-unmethylated lines. In the MGMT promoter-hypermethylated GBM12 line (median survival with TMZ+veliparib = 189 days, 95% confidence interval [CI] = 59 to 289 days, vs TMZ alone = 98 days, 95% CI = 49 to 210 days, P = .04), the profound TMZ-sensitizing effect of veliparib was lost when MGMT was overexpressed (median survival with TMZ+veliparib = 36 days, 95% CI = 28 to 38 days, vs TMZ alone = 35 days, 95% CI = 32 to 37 days, P = .87), and a similar association was observed in two nearly isogenic GBM28 sublines with an intact vs deleted MGMT locus. In comparing DNA damage signaling after dosing with veliparib/TMZ or TMZ alone, increased phosphorylation of damage-responsive proteins (KAP1, Chk1, Chk2, and H2AX) was observed only in MGMT promoter-hypermethylated lines. CONCLUSION Veliparib statistically significantly enhances (P < .001) the efficacy of TMZ in tumors with MGMT promoter hypermethylation. Based on these data, MGMT promoter hypermethylation is being used as an eligibility criterion for A071102 (NCT02152982), the phase II/III clinical trial evaluating TMZ/veliparib combination in patients with GBM.