Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ann Charlotte Wikström is active.

Publication


Featured researches published by Ann Charlotte Wikström.


Biochemical and Biophysical Research Communications | 1988

Association of the dioxin receptor with the Mr 90,000 heat shock protein: A structural kinship with the glucocorticoid receptor

Marc G. Denis; Scott Cuthill; Ann Charlotte Wikström; Lorenz Poellinger; Jan Åke Gustafsson

The Mr approximately equal to 90,000 heat shock protein, hsp90, readily interacts with the glucocorticoid receptor to form the 9 S, non-DNA-binding receptor complex. This receptor is stabilized in cytosolic preparations by sodium molybdate. In analogy, sodium molybdate stabilizes a 9 S form of the dioxin receptor. Polyclonal antibodies raised against the purified glucocorticoid receptor-associated hsp90 interact with the molybdate-stabilized 9 S dioxin-receptor complex but not with the 4 S dioxin receptor monomer, as assessed by sedimentation shift analysis on sucrose gradients. Thus we conclude that both the dioxin and glucocorticoid receptor can form heteromeric complexes which share a common non-ligand-binding component. These results represent the first demonstration of a structural relationship between the dioxin and glucocorticoid receptors.


The EMBO Journal | 1990

The specific DNA binding activity of the dioxin receptor is modulated by the 90 kd heat shock protein

Anna Wilhelmsson; Scott Cuthill; Marc G. Denis; Ann Charlotte Wikström; Jan Åke Gustafsson; Lorenz Poellinger

The dioxin receptor is a gene regulatory protein which exhibits many structural and functional similarities to steroid hormone receptors. In this study we compare the subunit composition of two forms of the dioxin receptor, sedimenting at approximately 9S and approximately 6S respectively, which are present in nuclear extract from wild‐type Hepa 1c1c7 mouse hepatoma cells following treatment in vivo with dioxin. The nuclear approximately 9S receptor form contained the 90 kd heat shock protein, hsp90. As assessed by a gel mobility shift assay, this receptor form did not bind to the xenobiotic response element (XRE) of the target gene cytochrome P‐450 IA1. In contrast, the smaller approximately 6S receptor form did not contain any immunochemically detectable hsp90. Moreover, this receptor form specifically bound to the XRE recognition sequence. Thus, the specific DNA binding activity of the dioxin receptor was inhibited by association with hsp90, and the approximately 9S dioxin receptor species could be regarded as a nonactive receptor form. Neither the approximately 9S nor the approximately 6S receptor forms were detected in nuclear extract from a dioxin treated mutant clone of Hepa 1 that expresses a nuclear translocation deficient receptor phenotype. We conclude that activation of the dioxin receptor is, at least, a two step process involving binding of the ligand and dissociation of hsp90 from the ligand‐binding receptor protein. Inhibition of the DNA binding activity of transcription factors by protein‐‐protein interaction has also been described for several steroid hormone receptors and for the NF kappa B factor.(ABSTRACT TRUNCATED AT 250 WORDS)


Molecular and Cellular Endocrinology | 1993

Localization of the glucocorticoid receptor in testis and accessory sexual organs of male rat

Rüdiger Schultz; Jorma Isola; Martti Parvinen; Jari Honkaniemi; Ann Charlotte Wikström; Jan Åke Gustafsson; Markku Pelto-Huikko

Localization of glucocorticoid receptor-like immunoreactivity (GR-LI) was studied in adult rat testis, epididymis, ejaculatory duct, seminal vesicle and prostate by light and electron microscopic immunocytochemistry. In the interstitium of the testis GR-LI was seen in the nuclei of Leydig cells, macrophages, fibroblasts, smooth muscle cells and endothelial cells of blood vessels. Furthermore, GR-LI was observed in zygotene and early pachytene primary spermatocytes of some seminiferous tubules during stages XIII-XIV and I-III of the spermatogenic cycle. Other spermatogenic cells and Sertoli cells were devoid of staining. GR-LI was also found in peritubular myoid cells, fibroblasts and basal cells of the epididymis, vas deferens and prostate. Localization of GR-LI in primary spermatocytes and Leydig cells suggests that glucocorticoids directly affect spermato- and steroidogenesis in the testis. The absence of GR-LI from functional, stromal cells of the male accessory sexual organs suggests that they are not targets for glucocorticoid hormones.


The Journal of Steroid Biochemistry and Molecular Biology | 1995

Subcellular distribution of the glucocorticoid receptor and evidence for its association with microtubules

Gunnar Akner; Ann Charlotte Wikström; Jan Åke Gustafsson

The cellular distribution of the glucocorticoid receptor (GR) has not yet been firmly established. The extensive literature indicates that GR is present both in the cytoplasm and the cell nucleus, however, some studies have failed to detect cytoplasmic GR. It is still controversial as to whether GR is randomly diffusing in the cytoplasm and nucleus, or if the GR-distribution is organized or controlled in some way, which may be of importance for the transduction of glucocorticoid effects to cells. There is evidence that both non-activated and activated GR is associated with the plasma membrane, a number of cytoplasmic organelles and the nucleus. Both morphological and biochemical evidence show that GR is associated with microtubules during different stages of the cell cycle, i.e. GR co-localizes, co-purifies and co-polymerizes with tubulin. This indicates that GR is structurally linked to the intracellular MT-network which may be of importance in the mechanism of action of glucocorticoid hormones. The literature in this field is reviewed including the reported data on subcellular GR-localization.


Journal of Steroid Biochemistry | 1986

Functional analysis of the purified glucocorticoid receptor.

Jan Åke Gustafsson; Jan Carlstedt-Duke; Örjan Wrange; Sam Okret; Ann Charlotte Wikström

Glucocorticoid-receptor complex (GR) has been purified from rat liver by differential affinity for DNA before and after activation, followed by ion-exchange chromatography. The purified GR has mol. wt 94,000 dalton. The protein contains three functional domains: (A) a steroid-binding domain; (B) a DNA-binding domain; and (C) a domain necessary for normal biological function. A second protein, with mol. wt 72,000 dalton, copurifies with the GR. This protein does not bind steroid, does not interact with antibodies raised against the GR and does not show the same susceptibility to limited proteolytic cleavage as the 94,000 dalton protein. Analysis of the specific interaction of the purified GR with the mouse mammary tumour virus gene, assayed by glycerol-gradient centrifugation, shows that one molecule of 94,000 dalton protein binds to each of the specific binding sites in the long terminal repeat region. Analysis of the fractions from the glycerol gradients show that the 72,000 dalton protein is associated to the binding species (94,000 dalton receptor protein) in about equimolar amounts. Analysis of the molybdate-stabilized non-activated receptor complex using monoclonal antibodies raised against the 94,000 dalton receptor protein indicates that the molybdate-stabilized complex is a hetero-oligomer. The hetero-oligomer consists of only one molecule of the 94,000 dalton receptor protein, in association with other non-steroid-binding proteins.


Journal of Steroid Biochemistry | 1989

The non-activated glucocorticoid receptor: Structure and activation

Jan Åke Gustafsson; Ann Charlotte Wikström; Marc G. Denis

Glucocorticoid hormone receptors are present in the soluble fraction of target cell homogenates as large entities (Mr approximately 300,000) that are unable to interact with DNA. These large complexes contain an Mr approximately 94,000 steroid- and DNA-binding polypeptide, in association with an Mr approximately 90,000 non-ligand-binding entity, which has been identified as a heat shock protein, hsp90. This protein has been purified to near homogeneity as a component of the non-activated receptor complex. Characterization of the purified protein revealed its presence as a dimer in the large receptor form. Dissociation of the receptor-hsp90 complex can be induced by heat treatment only when ligand is bound to the receptor, as demonstrated by specific DNA-binding assay and sucrose gradient ultracentrifugation, hsp90 represents ca 1% of total proteins in rat liver cytosol, and milligram amounts were purified using a combination of high performance ion exchange and gel permeation chromatography. Monospecific antibodies were raised in rabbits. They were found to precipitate the intact non-activated glucocorticoid receptor, as well as the Mr approximately 27,000 steroid-binding fragment of the receptor generated by trypsin treatment, indicating that hsp90 interacts with the steroid-binding domain of the glucocorticoid receptor. Finally, translation of glucocorticoid receptor mRNA in reticulocyte lysate yields a protein which also interacts with hsp90 and binds to DNA only after ligand-binding and heat treatment. Thus, the glucocorticoid receptor is synthesized in a non-activated form also in vitro.


Biochemical and Biophysical Research Communications | 2008

FMS-like tyrosine kinase 3 interacts with the glucocorticoid receptor complex and affects glucocorticoid dependent signaling

Abolfazl Asadi; Erik Hedman; Christina Widén; Johanna Zilliacus; Jan Åke Gustafsson; Ann Charlotte Wikström

The glucocorticoid receptor (GR) forms part of a multiprotein complex consisting of chaperones and proteins active in glucocorticoid signaling and other pathways. By immunoaffinity purification of GR, followed by Edman sequencing and Western blotting, we identified the FMS-like tyrosine kinase 3 (Flt3) as a GR-interacting protein in rat liver and hepatoma cells. Flt3 interacts with both non-liganded and liganded GR. The DNA-binding domain of GR is sufficient for Flt3 interaction as shown by GST-pull down experiments. Studies of the effects of Flt3 and its ligand FL in glucocorticoid-driven reporter-gene assays in Cos7 cells, show that co-transfection with Flt3 and FL potentiates glucocorticoid effects. Treatment with FL had no effect on GR location and Dex induced translocation of GR was unaffected by FL. In summary, GR and Flt3 interact, affecting GR signaling. This novel cross-talk between GR and a hematopoietic growth factor might also imply glucocorticoid effects on Flt3-mediated signaling.


Journal of Steroid Biochemistry | 1989

Glucocorticoid-receptor complexes are associated with small RNA in vitro

Gian Paolo Rossini; Ann Charlotte Wikström; Jan Åke Gustafsson

Identification of RNA associated with soluble glucocorticoid-receptor complexes of HeLa cells was performed by immunoprecipitation of receptor complexes with a monoclonal antibody raised against rat liver glucocorticoid receptor. Polyacrylamide gel electrophoresis of RNA extracted from immunoprecipitates of cytosolic complexes revealed the presence of eight RNA bands, consisting of 28S, 18S, and small RNAs, including 5.8S, 5S and tRNA. A comparison of RNA species immunoprecipitated by monoclonal anti-glucocorticoid receptor antibody and IgG purified from normal mouse serum showed that four small RNAs were preferentially recovered after immunoprecipitation with anti-glucocorticoid receptor antibody. When these species were analyzed on sequencing gels, their nucleotide lengths coincided with those of 7-3, 7S, U2, and U1 RNA. Immunoprecipitation of nuclear extracts containing glucocorticoid-receptor-RNA complexes showed that the same set of small RNAs was preferentially immunoprecipitated by anti-glucocorticoid receptor antibody. The four small RNAs we detected represented minor species in whole extracts, and their preferential immunoprecipitation by anti-glucocorticoid receptor antibody was prevented by removal of glucocorticoid-receptor complexes from HeLa cell extracts. We conclude that 7-3, 7S, U2, and U1 RNA are associated with glucocorticoid-receptor complexes in vitro, and hypothesize that post-transcriptional effects of glucocorticoids may in part be mediated through interaction of receptor complexes with these small RNAs.


Journal of Steroid Biochemistry | 1984

Structure and specific DNA binding of the rat liver glucocorticoid receptor

Jan Åke Gustafsson; Jan Carlstedt-Duke; Sam Okret; Ann Charlotte Wikström; O Wrange; Farhang Payvar; Keith Yamamoto

During recent years major advances have been made in our understanding of glucocorticoid mechanism of action. This progress has been made possible by access to purified glucocorticoid receptor in significant amounts as well as by application of hybrid DNA technology within the field of glucocorticoid control of gene expression. Especially the mammary tumour virus genome has turned out to be a convenient experimental system suitable for such investigations. This paper summarizes some of the work carried out in our own laboratory, partially in collaboration with Dr Keith Yamamoto and his associates at the Department of Biochemistry and Biophysics, University of California, San Francisco, U.S.A.


Molecular and Cellular Endocrinology | 1995

GLUCOCORTICOID RECEPTOR INHIBITS MICROTUBULE ASSEMBLY IN VITRO

Gunnar Akner; Ann Charlotte Wikström; Per Erik Strömstedt; Olov Stockman; Jan Åke Gustafsson; Margareta Wallin

The effect of glucocorticoid hormones, purified glucocorticoid receptor (GR) and purified heat shock protein M(r) 90,000 (hsp90) on microtubule (MT) assembly in vitro was tested by a spectrophotometric MT assembly assay and electron microscopy. GR significantly prolonged the nucleation phase, slowed down the assembly rate and reduced the maximal amplitude of MT assembly compared with control. The effects were partially reversed by the addition of glucocorticoid hormone. GR associated with MTs. These results indicate that GR affects MT assembly in vitro, which may be a functional correlate to the structural association of GR with MTs. This implies that factors affecting GR may affect MT assembly in vivo.

Collaboration


Dive into the Ann Charlotte Wikström's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sam Okret

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lorenz Poellinger

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

O Wrange

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge