Ann-Christin Dippel
Aarhus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ann-Christin Dippel.
Journal of Applied Crystallography | 2015
Bjarne R. S. Hansen; Kasper T. Møller; Mark Paskevicius; Ann-Christin Dippel; Peter Walter; C.J. Webb; Claudio Pistidda; Nils Bergemann; Martin Dornheim; Thomas Klassen; Jens-Erik Jørgensen; Torben R. Jensen
New sample environments and techniques specifically designed for in situ powder X-ray diffraction studies up to 1000 bar (1 bar = 105 Pa) gas pressure are reported and discussed. The cells can be utilized for multiple purposes in a range of research fields. Specifically, investigations of gas–solid reactions and sample handling under inert conditions are undertaken here. Sample containers allowing the introduction of gas from one or both ends are considered, enabling the possibility of flow-through studies. Various containment materials are evaluated, e.g. capillaries of single-crystal sapphire (Al2O3), quartz glass (SiO2), stainless steel (S316) and glassy carbon (Sigradur K), and burst pressures are calculated and tested for the different tube materials. In these studies, high hydrogen pressure is generated with a metal hydride hydrogen compressor mounted in a closed system, which allows reuse of the hydrogen gas. The advantages and design considerations of the in situ cells are discussed and their usage is illustrated by a case study.
Journal of Synchrotron Radiation | 2015
Ann-Christin Dippel; Hanns-Peter Liermann; Jan Torben Delitz; Peter Walter; Horst Schulte-Schrepping; Oliver H. Seeck; Hermann Franz
By providing the capabilities for high-resolution, high-energy and time-resolved powder X-ray diffraction, beamline P02.1 is a versatile tool to tackle various problems in materials science, crystallography and chemistry.
Angewandte Chemie | 2014
Dipankar Saha; Kirsten M. Ø. Jensen; Christoffer Tyrsted; Espen D. Bøjesen; Aref Mamakhel; Ann-Christin Dippel; Mogens Christensen; Bo B. Iversen
Pair distribution function analysis of in situ total scattering data recorded during formation of WO3 nanocrystals under hydrothermal conditions reveal that a complex precursor structure exists in solution. The WO6 polyhedra of the precursor cluster undergo reorientation before forming the nanocrystal. This reorientation is the critical element in the formation of different hexagonal polymporphs of WO3.
Journal of Applied Crystallography | 2013
Markus Herklotz; Frieder Scheiba; Manuel Hinterstein; Kristian Nikolowski; Michael Knapp; Ann-Christin Dippel; Lars Giebeler; J. Eckert; Helmut Ehrenberg
A brief review of in situ powder diffraction methods for battery materials is given. Furthermore, it is demonstrated that the new beamline P02.1 at the synchrotron source PETRA III (DESY, Hamburg), equipped with a new electrochemical test cell design and a fast two-dimensional area detector, enables outstanding conditions for in situ diffraction studies on battery materials with complex crystal structures. For instance, the time necessary to measure a pattern can be reduced to the region of milliseconds accompanied by an excellent pattern quality. It is shown that even at medium detector distances the instrumental resolution is suitable for crystallite size refinements. Additional crucial issues like contributions to the background and available q range are determined.
Acta Crystallographica Section A | 2014
Niels Bindzus; Tine Straasø; Nanna Wahlberg; Jacob Becker; Lasse Bjerg; Nina Lock; Ann-Christin Dippel; Bo B. Iversen
Synchrotron powder X-ray diffraction data are used to determine the core electron deformation of diamond. Core shell contraction inherently linked to covalent bond formation is observed in close correspondence with theoretical predictions. Accordingly, a precise and physically sound reconstruction of the electron density in diamond necessitates the use of an extended multipolar model, which abandons the assumption of an inert core. The present investigation is facilitated by negligible model bias in the extraction of structure factors, which is accomplished by simultaneous multipolar and Rietveld refinement accurately determining an atomic displacement parameter (ADP) of 0.00181 (1) Å(2). The deconvolution of thermal motion is a critical step in experimental core electron polarization studies, and for diamond it is imperative to exploit the monatomic crystal structure by implementing Wilson plots in determination of the ADP. This empowers the electron-density analysis to precisely administer both the deconvolution of thermal motion and the employment of the extended multipolar model on an experimental basis.
ACS Nano | 2014
Kirsten M. Ø. Jensen; Henrik L. Andersen; Christoffer Tyrsted; Espen D. Bøjesen; Ann-Christin Dippel; Nina Lock; Simon J. L. Billinge; Bo B. Iversen; Mogens Christensen
The formation and growth of maghemite (γ-Fe2O3) nanoparticles from ammonium iron(III) citrate solutions (C(6)O(7)H(6) · xFe(3+) · yNH(4)) in hydrothermal synthesis conditions have been studied by in situ total scattering. The local structure of the precursor in solution is similar to that of the crystalline coordination polymer [Fe(H(2)cit(H2O)](n), where corner-sharing [FeO(6)] octahedra are linked by citrate. As hydrothermal treatment of the solution is initiated, clusters of edge-sharing [FeO(6)] units form (with extent of the structural order <5 Å). Tetrahedrally coordinated iron subsequently appears, and as the synthesis continues, the clusters slowly assemble into crystalline maghemite, giving rise to clear Bragg peaks after 90 s at 320 °C. The primary transformation from amorphous clusters to nanocrystallites takes place by condensation of the clusters along the corner-sharing tetrahedral iron units. The crystallization process is related to large changes in the local structure as the interatomic distances in the clusters change dramatically with cluster growth. The local atomic structure is size dependent, and particles smaller than 6 nm are highly disordered. The final crystallite size (<10 nm) is dependent on both synthesis temperature and precursor concentration.
Acta Crystallographica Section A | 2016
Nanna Wahlberg; Niels Bindzus; Lasse Bjerg; Jacob Becker; Ann-Christin Dippel; Bo B. Iversen
Crystalline silicon is an ideal compound to test the current state of experimental structure factors and corresponding electron densities. High-quality structure factors have been measured on crystalline silicon with synchrotron powder X-ray diffraction. They are in excellent agreement with benchmark Pendellösung data having comparable accuracy and precision, but acquired in far less time and to a much higher resolution (sin θ/λ < 1.7 Å(-1)). The extended data range permits an experimental modelling of not only the valence electron density but also the core deformation in silicon, establishing an increase of the core density upon bond formation in crystalline silicon. Furthermore, a physically sound procedure for evaluating the standard deviation of powder-derived structure factors has been applied. Sampling statistics inherently account for contributions from photon counts as well as the limited number of diffracting particles, where especially the latter are particularly difficult to handle.
Journal of Applied Crystallography | 2014
Melanie Müller; Robert E. Dinnebier; Ann-Christin Dippel; Harold T. Stokes; Branton J. Campbell
The application of rotational symmetry modes to quantitative rigid-body analysis is demonstrated for octahedral rotations in Mg(H2O)6RbBr3. Rigid-body rotations are treated as axial-vector order parameters and projected using group-theoretical methods. The high-temperature crystal structure of the Mg(H2O)6RbBr3 double salt consists of a cubic perovskite-like corner-sharing network of RbBr6 octahedra with isolated MgO6 octahedra at the perovskite A sites. A phase transition occurs at 411 K upon cooling, whereupon the MgO6 octahedra experience a substantial rigid-body rotation, the RbBr6 octahedra are translated but not rotated, and both types of octahedra become slightly distorted. The MgO6 rotation has three orthogonal components associated with the X5−, Γ4+ and X1− irreducible representations of the parent Pm{\overline 3}m space-group symmetry which, given the weakly first-order character of the transition, appear to be strongly coupled. Parametric and sequential refinements of the temperature-dependent structure were conducted using four model types: (1) traditional atomic xyz coordinates for each atom, (2) traditional rigid-body parameters, (3) purely displacive symmetry modes and (4) rigid-body rotational symmetry modes. We demonstrate that rigid-body rotational symmetry modes are an especially effective parameter set for the Rietveld characterization of phase transitions involving polyhedral rotations.
Acta Crystallographica Section A | 2016
Ann-Christin Dippel; Kirsten M. Ø. Jensen; Christoffer Tyrsted; Martin Bremholm; Espen D. Bøjesen; Dipankar Saha; Steinar Birgisson; Mogens Christensen; Simon J. L. Billinge; Bo B. Iversen
Varying atomic short-range order is correlated with the ratio of the monoclinic (m) to tetragonal (t) phase in ZrO2 nanoparticle formation by solvothermal methods. Reactions from Zr oxynitrate in supercritical methanol and Zr acetate in water (hydrothermal route) were studied in situ by X-ray total scattering. Irrespective of the Zr source and solvent, the structure of the precursor in solution consists of edge-shared tetramer chains. Upon heating, the nearest-neighbor Zr-O and Zr-Zr distances shorten initially while the medium-range connectivity is broken. Depending on the reaction conditions, the disordered intermediate transforms either rapidly into m-ZrO2, or more gradually into mixed m- and t-ZrO2 with a concurrent increase of the shortest Zr-Zr distance. In the hydrothermal case, the structural similarity of the amorphous intermediate and m-ZrO2 favors the formation of almost phase-pure m-ZrO2 nanoparticles with a size of 5 nm, considerably smaller than the often-cited critical size below which the tetragonal is assumed to be favoured. Pair distribution function analysis thus unravels ZrO2 phase formation on the atomic scale and in this way provides a major step towards understanding polymorphism of ZrO2 beyond empirical approaches.
Journal of Synchrotron Radiation | 2014
Tine Straasø; Ann-Christin Dippel; Jacob Becker; Jens Als-Nielsen
Under the experimental condition that all Bragg peaks in a powder X-ray diffraction (PXRD) pattern have the same shape, one can readily obtain the Bragg intensities without fitting any parameters. This condition is fulfilled at the P02.1 beamline at PETRA III using the seventh harmonic from a 23 mm-period undulator (60 keV) at a distance of 65 m. For grain sizes of the order of 1 µm, the Bragg peak shape in the PXRD is entirely determined by the diameter of the capillary containing the powder sample and the pixel size of the image plate detector, and consequently it is independent of the scattering angle. As an example, a diamond powder has been chosen and structure factors derived which are in accordance with those calculated from density functional theory methods of the WIEN2k package to within an accuracy that allows a detailed electron density analysis.